Answer:
y=-1/3x+4/3
Step-by-step explanation:
y-y1=m(x-x1) m=1/3 x1=3 y1=2
y-2=1/3(x-2)
y-2=-1/3x-2/3
y=-1/3x+4/3
Step-by-step explanation:
<h2>Nubra Valley in Ladakh. Nubra Valley | #1 of 30 Most Beautiful Places in India. ... </h2><h2>Khajjiar in Himachal Pradesh. ... </h2><h2>Valley of Flowers in Uttarakhand. ... </h2><h2>Dal Lake in Srinagar. ... </h2><h2>Munnar in Kerala. ... </h2><h2>Dudhsagar Falls in Goa. ... </h2><h2>Yumthang Valley in Sikkim. ... </h2><h2>Tawang in Arunachal Pradesh.</h2>
Is that meant to be 10 to the power of 6?
Assuming it is it would be 10×10×10×10×10×10.
This equals 1,000,000 so the answer is C.
<u>Solution</u><u>:</u>


- Now, square root and square gets cancel out in the LHS. And in the RHS, apply the identity: (a + b)² = a² + 2ab + b².

- Now, transpose 4x and 4 to LHS.

- Now, do the addition and subtraction.

<u>Answer</u><u>:</u>
<u>x </u><u>=</u><u> </u><u>±</u><u> </u><u>3</u>
Hope you could understand.
If you have any query, feel free to ask.
Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311