1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
2 years ago
13

Is a triangle with side lengths 6, 10, 12 a right triangle?

Mathematics
2 answers:
Ipatiy [6.2K]2 years ago
5 0

Answer:

I don't know sorry

Step-by-step explanation:

Snezhnost [94]2 years ago
3 0

Answer:

yeah I believe soooooo

You might be interested in
Which equation shows the point slope form of the line that passes through (3,2) and has a slope of 1/3
olasank [31]

Answer:

y=-1/3x+4/3

Step-by-step explanation:

y-y1=m(x-x1)    m=1/3 x1=3 y1=2

y-2=1/3(x-2)

y-2=-1/3x-2/3

y=-1/3x+4/3

7 0
3 years ago
Using the quadratic formula, what are the solutions to x2 – 3x = -2?
Kryger [21]

Step-by-step explanation:

<h2>Nubra Valley in Ladakh. Nubra Valley | #1 of 30 Most Beautiful Places in India. ... </h2><h2>Khajjiar in Himachal Pradesh. ... </h2><h2>Valley of Flowers in Uttarakhand. ... </h2><h2>Dal Lake in Srinagar. ... </h2><h2>Munnar in Kerala. ... </h2><h2>Dudhsagar Falls in Goa. ... </h2><h2>Yumthang Valley in Sikkim. ... </h2><h2>Tawang in Arunachal Pradesh.</h2>
6 0
1 year ago
Read 2 more answers
What is the value of 106 ?
Artemon [7]
Is that meant to be 10 to the power of 6?
Assuming it is it would be 10×10×10×10×10×10.
This equals 1,000,000 so the answer is C.
7 0
3 years ago
Read 2 more answers
PLEASE SOLVE AND CHECK. SHOW COMPLETE SOLUTION
Alex17521 [72]

<u>Solution</u><u>:</u>

\sqrt{4x + 13}  = x + 2

  • First square both sides.

=  > ( \sqrt{4x + 13} ) ^{2}  = (x + 2) ^{2}

  • Now, square root and square gets cancel out in the LHS. And in the RHS, apply the identity: (a + b)² = a² + 2ab + b².

=  > 4x + 13 =  {(x)}^{2}  + 2 \times x \times 2 + (2) ^{2} \\  =  > 4x + 13 =  {x}^{2}   + 4x + 4

  • Now, transpose 4x and 4 to LHS.

=  > 4x - 4x + 13 - 4 =  {x}^{2}  \\

  • Now, do the addition and subtraction.

=  >  {x}^{2}  = 9 \\  =  >  x =  \sqrt{9}  \\  =  > x = ±3

<u>Answer</u><u>:</u>

<u>x </u><u>=</u><u> </u><u>±</u><u> </u><u>3</u>

Hope you could understand.

If you have any query, feel free to ask.

3 0
2 years ago
A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and
mr Goodwill [35]

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

6 0
3 years ago
Other questions:
  • A=4_0e^-0.05(14)<br> How do I solve this?
    11·1 answer
  • I need help on how to solve the problems on the right
    8·1 answer
  • An office supply company is shipping a case of wooden pencils to a store. There are 64 boxes of pencils in a case. If each box o
    14·2 answers
  • How many cups = to 56 ounces
    8·1 answer
  • Which of the following is not necessarily true for independent events A and B? P (A intersection B )equals P (A )P (B )P (A vert
    9·1 answer
  • PLEASE HELP!! AOC and BOD are diameters of a circle, centre O. Prove that triangle ABD and triangle DCA are congruent by RHS.
    7·2 answers
  • Can someone pls help me?
    9·1 answer
  • Evaluate this expression: 15 - 3u + u when u = 2
    15·2 answers
  • “The amount y (in cups) of flour is proportional to the number x of eggs in a recipe. the recipe calls for every two eggs. inter
    13·2 answers
  • Consider this equation y=-1/2x+4 1/2 and 3x - 4y = 12 solve the system by graphing. label each graph
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!