Answer:
33.73 lb to the left
Explanation:
You need to exert a force with the same magnitude, but opposite direction. You can visualize it in this way: When you push an object, the object will follow your path, but if there is another person opposing the force you are exerting, the object will just not move. If the force that the other person exerts were higher, then the object would move in the opposite direction. So, you need them to have the same magnitude.
Answer:
The velocity of a particle relative to S is equal to its velocity relative to S′ plus the velocity of S′ relative to S. We can extend Equation 4.35 to any number of reference frames. For particle P with velocities →vPA, →vPB, and →vPC in frames A, B, and C, →vPC=→vPA+→vAB+→vBC.
Explanation:
Resultant Velocity. Multiply the acceleration by the time the object is being accelerated. For example, if an object falls for 3 seconds, multiply 3 by 9.8 meters per second squared, which is the acceleration from gravity. The resultant velocity in this case is 29.4 meters per second.
Answer:
B. energy
Explanation:
A vector has direction.
Energy does not have a direction.
Answer:
50 KeV
Explanation:
50 KeV will be the most likely initial interaction with tissue.
Because Higher the energy lesser will the interaction with tissues, Because it will penetrate through tissue more easily in a very lesser time Whereas the photon with least energy will take more time to penetrate through the tissue, hence, higher interaction with tissue.
Answer:
Kinematics, branch of physics and a subdivision of classical mechanics concerned with the geometrically possible motion of a body or system of bodies without consideration of the forces involved (i.e., causes and effects of the motions).
Explanation:
*This answer came from https://www.britannica.com/science/kinematics