The average kinetic energy of a gas particle is directly proportional to the temperature. An increase in temperature increases the speed in which the gas molecules move. All gases at a given temperature have the same average kinetic energy. Lighter gas molecules move faster than heavier molecules.
Answer:
Fluorine is the most reactive element
Answer: One quarter of the force
Explanation:
According to Newton's law of Gravitation, the force
exerted between two bodies of masses
and
and separated by a distance
is equal to the product of their masses and inversely proportional to the square of the distance:
(1)
Where
is the gravitational constant
This means that the gravity force decreases when the distance between these two bodies increases.
In this context, if the distance between the capsule and the Earth increases twice, the new distance will be
.
Substituting this distance in (1):
(2)
<u>Finally:</u>
>>>This means the force toward Earth becomes one quarter "weaker"
Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.