1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
3 years ago
7

Air enters a turbine operating at steady state at 8 bar, 1400 K and expands to 0.8 bar. The turbine is well insulated, and kinet

ic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Physics
1 answer:
vladimir2022 [97]3 years ago
5 0

To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables

Mathematically this can be determined as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

Where

T_1 =Temperature at inlet of turbine

T_2 = Temperature at exit of turbine

P_1 = Pressure at exit of turbine

P_2 =Pressure at exit of turbine

The steady flow Energy equation for an open system is given as follows:

m_i = m_0 = m

m(h_i+\frac{V_i^2}{2}+gZ_i)+Q = m(h_0+\frac{V_0^2}{2}+gZ_0)+W

Where,

m = mass

m_i = mass at inlet

m_0= Mass at outlet

h_i = Enthalpy at inlet

h_0 = Enthalpy at outlet

W = Work done

Q = Heat transferred

V_i = Velocity at inlet

V_0= Velocity at outlet

Z_i= Height at inlet

Z_0= Height at outlet

For the insulated system with neglecting kinetic and potential energy effects

h_i = h_0 + W

W = h_i -h_0

Using the relation T-P we can find the final temperature:

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

\frac{T_2}{1400K} = (\frac{0.8bar}{8nar})^{(\frac{1.4-1}{1.4})}

T_2 = 725.126K

From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

So:

W = h_i -h_0

W = C_p (T_1-T_2)

W = 1.005(1400-725.126)

W = 678.248kJ/Kg

Therefore the maximum theoretical work that could be developed by the turbine is 678.248kJ/kg

You might be interested in
Hecto the Mornar a fursa explain i magnituse of the force acting right angle to the moment arm​
mixer [17]
<h2>~<u>Solution</u> :-</h2>
  • Here, the <u>moment arm</u> is defined as follows;

The magnitude of two forces, which when acting at right angle produce resultant force of VlOkg and when acting at 60° produce resultant of Vl3 kg. These forces are D. gravitational force of attraction towards the centre of the earth. A sample of metal weighs 219 gms in air, 180 gms in water, 120 gms in an <em>unknown fluid</em>.

\\

7 0
2 years ago
HELP ME HOW ARE BLACK HOLES FROMED
V125BC [204]

Answer:

Stellar black holes form when the center of a very massive star collapses in upon itself.

6 0
2 years ago
Read 2 more answers
Im sorry i dont understand pls helpp -w-
rodikova [14]
Temperature is related to a physical change of a substance because it determines the state of the object via cooling, heating or freezing. To make the concept clear, hear are some examples:-
1. Chocolate melts and turns into liquid form. This is a physical change
2. Water freezes via cooling and forms ice which is in a solid state. This is another physical change

Hope this helped and have a nice day : )

7 0
3 years ago
Read 2 more answers
Suppose that a steel bridge, 1000 m long, were built without any expansion joints. Suppose that only one end of the bridge was h
Stels [109]

Answer:

The difference in the length of the bridge is 0.42 m.

Explanation:

Given that,

Length = 1000 m

Winter temperature = 0°C

Summer temperature = 40°C

Coefficient of thermal expansion \alpha= 10.5\times10^{-6}\ K^{-1}

We need to calculate the difference in the length of the bridge

Using formula of the difference in the length

\Delta L=L\alpha\Delta T

Where, \Delta T= temperature difference

\alpha=Coefficient of thermal expansion

L= length

Put the value into the formula

\Delta L=1000\times10.5\times10^{-6}(40^{\circ}-0^{\circ})

\Delta L=0.42\ m

Hence, The difference in the length of the bridge is 0.42 m.

5 0
3 years ago
How many hydrogens are in 3 molecules of H20?
Mazyrski [523]

Answer:

1 atom of oxygen

2 atoms of hydrogen in each molecule

Each water molecule contains 3 atoms making the H2O formula

3 0
3 years ago
Other questions:
  • Centripetal force is a centering force related to acceleration. The centripetal force when driving prevents which of the followi
    14·1 answer
  • A super ball stops bouncing because A) gravity never lets it bounce. B) it loses energy due to friction. C) it cannot gain poten
    6·1 answer
  • What is the similarity and the principal difference between a beam of X-rays and a beam of light?
    10·1 answer
  • Although there are different ways to approach a scientific investigation, all scientific investigations begin with some sort of
    7·2 answers
  • An 80.0 kg man sits on a scale in his car. The car is driving at a speed of 11.0 m/s right as it passes over the top of a semici
    5·1 answer
  • PLEASEEEE HEEEEELP!!!!!
    14·1 answer
  • An airplane travels 80 m/s as it makes a horizontal circular turn which has a 0.80-km radius. What is the magnitude of the resul
    12·1 answer
  • he absolute potential at a distance of 2.0 m from a positive point charge is 100 V. What is the absolute potential 4.0 m away fr
    7·2 answers
  • Which has a total mass of 1612 kg. If she accelerates from rest to a speed of 12.87 m/s in 3.47 s, what is the minimum power req
    14·1 answer
  • What is energy and types of energy<br>​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!