Answer:
5
Step-by-step explanation:
Create an equation 9.99+0.35t≤12
solve for t
Answer:
Please find attached the required graph of the inequality representing the temperatures yeast will NOT thrive
Step-by-step explanation:
The given parameters are;
The temperature range, y, in which yeast thrives is 90°F ≤ y ≤ 95°F
Therefore, the temperature range, y', in which yeast will not thrive is 90°F > y and y > 95°F
The graph of the inequality that represents the temperature is therefore given as shown in the attached drawing.
They are equal to one another because 4(3+x) can be rewritten using the distributive property as 4(3)+4x or 3+3+3+3+x+x+x+x
Answer:
The average rate of change of rainfall in the rainforest between 2nd year and 6th year = <u>3 inches</u>
Step-by-step explanation:
Given function representing inches of rainfall:

To find the average rate of change between the 2nd year and the 6th year.
Solution:
The average rate of change between interval
is given as :

For the given function we need to find the average rate of change between 2nd year and 6th year. ![[2,6]](https://tex.z-dn.net/?f=%5B2%2C6%5D)
So, we have:


Thus, average rate of change will be:

⇒ 
⇒ 
⇒ 
Thus, the average rate of change of rainfall in the rainforest between 2nd year and 6th year = 3 inches
Answer:
h(1.5) = 7.3 ft
h(10.3) = 24.9 ft
Step-by-step explanation:
Given the function h(d) = 2d + 4.3,
where:
h = height of the water in a fountain (in feet)
d = diameter of the pipe carrying the water (in inches)
<h3>h(1.5)</h3>
Substitute the input value of d = 1.5, into the function:
h(1.5) = 2(1.5) + 4.3
h(1.5) = 3 + 4.3
h(1.5) = 7 feet
The height of the water in a fountain is 7 feet when the diameter of the pipe is 1.5 inches.
<h3>h(10.3)</h3>
Substitute the input value of d = 10.3, into the function:
h(10.3) = 2(10.3) + 4.3
h(10.3) = 20.6 + 4.3
h(10.3) = 24.9 feet
The height of the water in a fountain is 24.9 feet when the diameter of the pipe is 10.3 inches.
<h3>Context of the solutions to h(1.5) and h(10.3):</h3>
The solutions to both functions show the relationship between the diameter of the pipe to the height of the water in a fountain. The height of the water in fountain increases relative to the diameter of the pipe. In other words, as the diameter or the size of the pipe increases or widens, the height of the water in a fountain also increases.