Mole ratio :
<span>5 C</span>₆<span>H</span>₆<span>CHO + 2 KMnO</span>₄<span> + 6 H</span>⁺ <span>= 5 C</span>₆<span>H</span>₆<span>COOH + 2 Mn</span>²⁺<span> + 3 H</span>₂<span>O + 2 K</span>⁺
5 moles C₆H₆CHO ------------------ 2 moles KMnO₄
1.0 moles C₆H₆CHO ---------------- ( moles of KMnO₄ )
moles of KMnO₄ = 1.0 x 2 / 5
moles of KMnO₄ = 2 / 5
= 0.40 moles of KMnO4
hope this helps!
Answer: Option (A) is the correct answer.
Explanation:
When there occurs no change in the chemical composition of a substance then it is known as physical property.
For example, mass, volume, density are all physical properties.
Since, the mass of an electron is negligible and an electron holds a negative charge.
Therefore, negatively charged particle with very little mass accurately describes the physical properties of electrons in atoms.
<h3>Answer:</h3>
2.55 × 10²² Na Atoms
<h3>Solution:</h3>
Data Given:
M.Mass of Na = 23 g.mol⁻¹
Mass of Na = 973 mg = 0.973 g
# of Na Atoms = ??
Step 1: Calculate Moles of Na as:
Moles = Mass ÷ M.Mass
Moles = 0.973 g ÷ 23 g.mol⁻¹
Moles = 0.0423 mol
Step 2: Calculate No, of Na Atoms as:
As 1 mole of sodium atoms counts 6.022 × 10²³ and equals exactly to the mass of 23 g. So, we can write,
Moles = No. of Na Atoms ÷ 6.022 × 10²³ Na Atoms.mol⁻¹
Solving for No. of Na Atoms,
No. of Na Atoms = Moles × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 0.0423 mol × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 2.55 × 10²² Na Atoms
<h3>Conclusion: </h3>
2.55 × 10²² sodium atoms are required to reach a total mass of 973 mg in a substance of pure sodium.
A. melting
it's the answer to your question.