Answer:
hi, what number are u asking us to solve?
Answer:
(a) 2 feet.
(b) 2 feet.
Step-by-step explanation:
We have been given that the velocity function
in feet per second, is given for a particle moving along a straight line.
(a) We are asked to find the displacement over the interval
.
Since velocity is derivative of position function , so to find the displacement (position shift) from the velocity function, we need to integrate the velocity function.




Using power rule, we will get:
![\left[\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}}\right] ^4_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bt%5E%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%7D%7B-%5Cfrac%7B1%7D%7B2%7D%2B1%7D%7D%5Cright%5D%20%5E4_1)
![\left[\frac{t^{\frac{1}{2}}}{\frac{1}{2}}}\right] ^4_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7Bt%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Cright%5D%20%5E4_1)

Therefore, the total displacement on the interval
would be 2 feet.
(b). For distance we need to integrate the absolute value of the velocity function.


Since square root is not defined for negative numbers, so our integral would be
.
We already figured out that the value of
is 2 feet, therefore, the total distance over the interval
would be 2 feet.
Answer:
Quadrant III
Step-by-step explanation:
Quadrants are numbered in a counterclockwise order starting at the top. Since both numbers are negative, it would fall into the lower left quadrant, also known as quadrant 3.
The sequence is arithmetic as it goes down 3 every time
Arithmetic nth term formula is an=a1+d(n-1)
an=7-3(n-1)
an=7-3n+3
an=-3n+10
To find the 100th term substitute n for 100
a100=-3(100)+10
a100=-300+10
a100=-290
The 100th term is -290
Answer:
77%
Step-by-step explanation: