Answer:
ω = 0.571 rad/s
Explanation:
given data
radius = 30 m
solution
we take here g = 9.8 m/s²
and g is express as
g = r × ω² ....................1
put here value and we get
9.8 = 30 × ω²
solve it we get
ω = 0.571 rad/s
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
<u>a. by moving the book without acceleration and keeping the height of the book constant</u>
1 cubic cm is the same as 1 mL, so the answer would be C.
Explanation:
Fe₂O₃ + CO → Fe₃O₄ + CO₂
Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.
aFe₂O₃ + bCO → cFe₃O₄ + dCO₂
a,b,c and d are the coefficients needed to balance the equation above;
Conserving Fe; 2a = 3c
O: 3a + b = 4c + 2d
C: b = d
let a = 1;
c = 
Since b = d
3a + d = 4c + 2d
3a = 4c + 2d - d
3a = 4c + d
a = 1, c = 
3 = 4 x
+ d
d = 
b = 
multiplying a, b, c and d by 3:
a = 3 b = 1 c = 2 and d = 1
3Fe₂O₃ + CO → 2Fe₃O₄ + CO₂
Learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly