1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
2 years ago
8

Mary had to guess at a chosen number between 1 and 10, to get to be the first in line. What’s the probability that she’ll choose

the correct number?
Mathematics
2 answers:
Vsevolod [243]2 years ago
6 0

Answer:

1 in 10, or 10% because there is a 90% chance she will choose the wrong number.

REY [17]2 years ago
5 0

Answer:

\frac{1}{10}

Step-by-step explanation:

1-10 is 10 numbers, only one of which is the correct one.

The resulting proportion is:

\frac{1}{10}

You might be interested in
Simplify: (2x-3)(4x+1)
mixas84 [53]

Answer:

8x^2-10x-3

Step-by-step explanation:

(2x-3)(4x+1)

2x(4x+1)-3(4x+1)

8x^2+2x-12x-3

8x^2-10x-3

3 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
I neeed helpppppp pleaseeeeee
zhenek [66]

Answer:

its 15 to the square root of 2

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
76 divided into 6954
zhuklara [117]
91.5 I’m pretty sure
7 0
3 years ago
Read 2 more answers
The sector of a circle with a 16-centimeter radius has a central angle measure of 45°.
Tresset [83]
A = (45/360)×16^2×pi
A = 32pi
8 0
3 years ago
Other questions:
  • A basketball player scores 162 points in 9 games. at this rate, how many points will she score in a 24-game season? answer
    15·1 answer
  • 15x+25=5x+175. If i am trying to find the answer to this, wouldn't i just subtract 5x from both sides and 25 from both sides????
    8·2 answers
  • the smith have 2 children. the sum of their ages is 21, and the product of their ages is 110. how old are the children
    12·1 answer
  • PLEASE HELP ME ITS VERY URGENT
    8·2 answers
  • What is the slope of the linear function that passes through the points (9, -2) and (-4,-6)?
    14·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Csqrt%7B50x%7D%20%20-%20%20%5Csqrt%7B18x%7D" id="TexFormula1" title="\sqrt{50x} - \sqrt{18
    9·1 answer
  • 7/3a - 8/5 +4/15a <br> Simplified
    13·1 answer
  • 11. If 9m - 3 = -318, then 14m = ?<br> a. -28<br> b. -504<br> c. -329<br> d. -584<br> e. -490
    12·2 answers
  • I need help with this it’s 9th grade algebra and I don’t know how to solve this one and I need the variables in it
    11·1 answer
  • Determine relationship b/t two triangles
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!