1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
6

Rational number on a number line

Mathematics
1 answer:
solong [7]3 years ago
6 0

Positive rational numbers are always represented on the right side of the zero on the number line. While negative rational numbers are always represented on the left side of zero on the number line.

You might be interested in
Factor completely, the expression: 2x^3-2x^2-12x
muminat
2x^3-2x^2-12x=2x(x^2-x-6)=(*)\\\\------------------------------\\x^2-x-6\\\\a=1;\ b=-1;\ c=-6\\\\\Delta=(-1)^2-4\cdot1\cdot(-6)=1+24=25\\\\\sqrt\Delta=\sqrt{25}=5\\\\x_1=\frac{1-5}{2\cdot1}=\frac{-4}{2}=-2;\ x_2=\frac{1+5}{2\cdot1}=\frac{6}{2}=3\\\\x^2-x-6=(x+2)(x-3)\\\\------------------------------\\\\(*)=2x(x+2)(x-3)
8 0
3 years ago
X f(x)
lubasha [3.4K]
Remember slope formula is y=mx+b m is the slope b is the y intercept

Part a-1+5/0+1 = 4/1 that just equals 4 slope of g(X) is 4

part b y = 4x + b -1 = 4(0) + b -1 = b so y = 4x - 1

the function g(x) has a bigger y intercept (or where it crosses y on a graph) y intercept of g(x) is 3 and the y intercept of f(x) is -1

This really helps if you graph it


5 0
4 years ago
Read 2 more answers
PLS HELP I WILL GIVE BRAINllESTFind the surface area of the rectangular prism.
galben [10]

Answer:

A=2(wl+hl+hw)

Step-by-step explanation:

7 0
3 years ago
Manny has 48 feet of wood. He wants to use all of it to create a border around a garden. The equation 2 l plus 2 w equals 48 can
AVprozaik [17]
2I + 2w = 48
9 feet is the answer.
Have a great day/night
7 0
2 years ago
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find
9966 [12]

Answer:

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<em> General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given Differential equation  y'' − 5 y' + 4 y = x

Given equation in operator form

        D²y - 5 Dy +  4 y = x

⇒     ( D² - 5 D +  4 ) y =x

⇒    f(D) y = Q

where  f(D) = D² - 5 D +  4 and Q(x) = x

<em>The auxiliary equation  f(m) =0</em>

<em>           m²-5 m + 4 =0</em>

         m² - 4 m - m + 4 =0

        m ( m -4 ) -1 ( m-4) =0

         (m - 1) =0   and ( m-4) =0

        <em> m = 1 and m =4</em>

<em>The complementary function </em>

<em></em>Y_{c} = C_{1} e^{x} + C_{2} e^{4x}<em></em>

<u><em>Step(ii)</em></u>:-

<u><em>particular integral</em></u>

<em>Particular integral</em>

<em>     </em>y_{p} = \frac{1}{f(D)} Q(x) = \frac{1}{D^{2}  - 5 D +  4} X<em></em>

<em>taking common '4' </em>

<em>                          </em>= \frac{1}{4(1 +  (\frac{D^{2}  - 5 D}{4} ))} X<em></em>

<em>                         </em>

<em>                           </em>=\frac{1}{4}  (1 + (\frac{D^{2} -5D}{4})^{-1} )} X<em></em>

<em>applying binomial expression</em>

<em>      ( 1 + x )⁻¹    = 1 - x + x² - x³ +.....       </em>

<em>                          </em>=\frac{1}{4}  (1 - (\frac{D^{2} -5D}{4}) +((\frac{D^{2} -5D}{4})^{2} -...} )X<em></em>

<em>Now simplifying and we will use notation D = </em>\frac{dy}{dx}<em></em>

<em>                        </em>=\frac{1}{4}  (x - (\frac{D^{2} -5D}{4})x +((\frac{D^{2} -5D}{4})^{2}(x) -...}<em></em>

<em>Higher degree terms are neglected</em>

<em>                     </em>=\frac{1}{4}  (x - (\frac{ -5 D}{4}) x)<em></em>

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<u><em>Final answer</em></u><em>:-</em>

<em>          General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

<em></em>

<em>         </em>

<em> </em>

     

4 0
3 years ago
Other questions:
  • In the equation g=4.1p+2, what is the dependent variable
    9·1 answer
  • How do you work out fractions converting in to decimals and percent
    8·2 answers
  • What is this answer ?
    8·1 answer
  • Given: r = (√3, √5, √7, √13) Why is r not a relation?
    15·1 answer
  • Which is the highest value 4.008,4.08,4.8 or 0.480?
    14·2 answers
  • PLEASE HELP ME THANK YOU, GUYS!❤️❤️❤️
    14·1 answer
  • Find the product of -5 – 4i and its conjugate. The answer is a + bi where
    11·1 answer
  • Please help i have more questions btw
    12·2 answers
  • The degree of the polynomial function below is[]<br> f(x) = -3x5 Plus 4X -2
    15·2 answers
  • 3. In the accompanying diagram, a rectangular container with the dimensions 10 inches by 15 inches by 20 inches is to
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!