The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J
Explanation:
It is given that,
Average power per unit mass generated by Lance, 

(a) Distance to cover race, 
Average speed of the person, v = 11 m/s
If t is the time taken to cover the race.


t = 14545.46 s
Let W is the work done. The relation between the work done and the power is given by :



W = 7090911.75 J
(b) Since, 
So, in 7090911.75 J, 
W = 1694.01 J
Hence, this is the required solution.
Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
The percentage of energy available to each organism is always 10 percent .