In the question it is already given that the football player is 80 kg.
Then the mass of the football player = 80 kg
Velocity at which the football player is running = 8 m/s
<span>Kinetic Energy = 0.5 • mass • square of velocity
Now we have to put the known data in this equation to find the actual velocity of the footballer.
</span> <span></span>So
Kinetic Energy of the footballer = 0.5 * 80 * (8 * 8)
= 0.5 * 80 * 64
= 2560
So the Kinetic energy of the footballer is 2560 joules
The answer is the less dense plate slides over the denser plate.
<span>The number in front is the number of molecules (or atoms) taking part in the (balanced) chemical reaction equation.</span>
Answer:
the electric field strength on the second one is 2.67 N/C.
Explanation:
the electric fiel on the first one is:
E1 = k×q/(r^2)
r^2 = k×q/(E1)
= (9×10^9)×(q)/(24.0)
= 375000000q
then the electric field on the second one is:
E2 = k×q/(R^2)
we know that R = 3r
R^2 = 9×r^2
E2 = k×q/(9×r^2)
= k×q/(9×375000000q)
= k/(9×375000000)
= (9×10^9)/(9×375000000)
= 2.67 N/C
Therefore, the electric field strength on the second one is 2.67 N/C.
While riding in a hot air balloon,
which is steadily at a speed of 1.01 m/s, and your phone accidentally falls.
<span>(a)
</span>The
speed of your phone after 4 s is:
V= u +
at
V= 1.01
+ (9.8)(4)
V=
40.21 m/s
<span>(b)
</span>The balloon
is ____ far:
V = u +
at
V= 1.01
+ (9.8)(1)
V=10.81
–distance at 1 one second
V= u +
at
V= 1.01
+ (9.8)(2)
V= 20.61-distance
at 2 seconds
V= u+ at
V=
30.41- distance at 3 seconds
V=
40.21- distance at 4 seconds
D=
102.04 m
<span>(c)
</span>If the
balloon is rising steadily at 1.01 m/s:
V= -1.1
m/s
<span> </span>