Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
<h3><u>Answer;</u></h3>
the north end to the south end.
<h3><u>Explanation;</u></h3>
- Magnetic field lines from a bar magnet form lines that are closed. The direction of magnetic field is taken to be outward from the North pole of the magnet and in to the South pole of the magnet.
- A magnetic field refers to the area surrounding a magnet where a force is exerted on certain objects. These lines are spread out of the north end of the magnet.
- The magnetic field lines resemble a bubble.
Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy
Almost all of the energy on Earth comes from the Sun
The energy in fossil fuels originally came from the Sun
Plants convert the energy
Explanation:
The sun is the ultimate source of energy on earth and even the whole of the solar system. The sun drives and powers all external processes on earth. It produces its energy from the nuclear fusion of lighter nuclei into heavier ones.
- Almost all of the energy on earth comes from the sun. A few component of the energy on the surface comes from the internal heat engine.
- The energy of fossil fuels originally came from the sun. This is because, plants stores the energy in the process of photosynthesis. When they die and the energy is not released, the energy is stored as fossil fuels.
- Plants in the process of photosynthesis converts the energy. Here green plants combines carbon dioxide and water in the presence of sunlight.
Learn more:
Convection brainly.com/question/1140127
#learnwithBrainly
The free electrons in metals can move through the metal, all while receiving and losing electrons, allowing metals to conduct electricity. Example: copper is a great conductor of electric current.