Answer:
Option (D) On average, the molecules of gas 1 lose some of their kinetic energy to the molecules of gas 2 through collisions, resulting in the two gases eventually having the same temperature.
Explanation:
From the question given, Gas 1 was initially at a higher temperature than Gas 2.
As the two gas mixes together, there will be a transfer of heat from Gas 1 molecules to Gas 2 molecules. Now, as this continues over a period of time, the two gas will eventually have the same temperature.
I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
Answer:
Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.
V=at and a=F/m
140/.070 = 2000m/s^2
2000*.020 = 40m/s
The ball’s velocity increased by 40m/s.
Answer:
16.935 N
Explanation:
In order to make the box start moving, the level force applied on the box (F) must be greater than the force of static friction that keeps the box at rest, which is equal to

where
is the coefficient of static friction
(mg) = 30 N is the weight of the box
Therefore, the condition for F must be:

So, the applied force must be greater than this value.