Answer:
NaHCO₃
Explanation:
Sodium bicarbonate (baking soda) is a chemical compound with the formula NaHCO₃.
Answer:
Explanation:The final homogenous solution, after cooling it to 40°C, will contain 47 g of potassium sulfate disolved in 150 g of water, so you can calculate the amount disolved per 100 g of water in this way:
[47 g of solute / 150 g of water] * 100 g of g of water = 31.33 grams of solute in 100 g of water.
So, when you compare with the solutiblity, 15 g of solute / 100 g of water, you realize that the solution has more solute dissolved with means that it is supersaturated.
To make a saturated solution, 15 grams of potassium sulfate would dissolve in 100 g of water.
Read more on Brainly.com - brainly.com/question/5143785#readmore
It is used when a slope is too steep or when there is no alternative method of preventing soil erosion. The most common crop<span> choices for </span>strip cropping<span> are closely sown crops such as hay, wheat, or other forages which are alternated with</span>strips<span> of row crops, such as corn, soybeans, cotton, or sugar beets.</span>
The potential of hydrogen pH of the solution with the given value of pOH to the nearest hundredth is 10.55.
What is pH of solution?
The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration [H+] of the given solution.
It is expressed as;
pH = -log[ H⁺ ]
Also,
pH + pOH = 14
Given that;
We simply substitute our values into the expression above.
pH + pOH = 14
pH + 3.45 = 14
pH = 14 - 3.45
pH = 10.55
Therefore, the potential of hydrogen pH of the solution with the given value of pOH to the nearest hundredth is 10.55.
Learn more about pH & pOH here: brainly.com/question/17144456
#SPJ4