Answer:
Polar covalent bond.
Explanation:
When the bond is formed between the atoms by sharing the electrons the bond thus have covalent character. The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive. When the electronegativity difference is less than 0.4 the bond is non polar covalent.
When bonded atoms have greater electronegativity difference i.e 2 or greater than two the bond is ionic because electron is transfer from low electronegative atom to highest electronegative atom.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
In case of H₂, Cl₂, Br₂ the bond has very high covalent character because of zero electronegativity difference.
Moles of Oxygen= 2.8075 moles
<h3>Further explanation</h3>
Given
29.2 grams of acetylene
Required
moles of Oxygen
Solution
Reaction(Combustion of Acetylene) :
2 C₂H₂ (g) + 5 O₂ (g) ⇒ 4CO₂ (g) + 2H₂O (g)
Mol of Acetylene :
= mass : MW Acetylene
= 29.2 g : 26 g/mol
= 1.123
From equation, mol ratio of Acetylene(C₂H₂) : O₂ = 2 : 5, so mol O₂ :
= 5/2 x mol C₂H₂
= 5/2 x 1.123
= 2.8075 moles
A reaction in which Oxygen (O₂) is produced from Mercury Oxide (HgO) would be a decomposition reaction.
2HgO → 2Hg + O₂
If 250g of O₂ is needed to be produced,
then the moles of oxygen needed to be produced = 250g ÷ 32 g/mol
= 7.8125 mol
Now, the mole ratio of Oxygen to Mercury Oxide is 1 : 2
∴ if the moles of oxygen = 7.8125 mol
then the moles of mercury oxide = 7.8125 mol × 2
= 15.625 mol
Thus the number moles of HgO needed to produce 250.0 g of O₂ is 15.625 mol
Molar mass of NaHCO3 is 83.9. moles of Na...O3= 5.8/83.9
=0.0691
for every mole of Na..O3 there are 3 O
n(O) = n(NaHCO3) x3
= 0.207
mass of O is the moles x molar mass (16)
therefore the mass of O is 3.3 grams