If 1/3 is 126 miles, then the total distance will be 3 times as much. So just doing:
126 * 3 = 378 miles.
Gives us the answer 378 miles. This is an intro to inverse functions which will come later.
Answer:
7F
Step-by-step explanation:
Add 7 to 0
0+7 = 7F
Step-by-step explanation:
step 1. the cube root is also to the 1/3 power
step 2. (27a^3b^7)^(1/3) = (3*3*3*a*a*a*b*b*b*b*b*b*b)^(1/3)
step 3. a third root: 3 factors in the root comes "out" of the root as 1
step 4. 3ab*b(b)^(1/3) = 3ab^2(b)^(1/3).
Answer:
Therefore the value of y(1)= 0.9152.
Step-by-step explanation:
According to the Euler's method
y(x+h)≈ y(x) + hy'(x) ....(1)
Given that y(0) =3 and step size (h) = 0.2.

Putting the value of y'(x) in equation (1)

Substituting x =0 and h= 0.2
![y(0+0.2)\approx y(0)+0.2[0\times y(0)-\frac12 (y(0))^2]](https://tex.z-dn.net/?f=y%280%2B0.2%29%5Capprox%20y%280%29%2B0.2%5B0%5Ctimes%20y%280%29-%5Cfrac12%20%28y%280%29%29%5E2%5D)
[∵ y(0) =3 ]

Substituting x =0.2 and h= 0.2
![y(0.2+0.2)\approx y(0.2)+0.2[(0.2)^2\times y(0.2)-\frac12 (y(0.2))^2]](https://tex.z-dn.net/?f=y%280.2%2B0.2%29%5Capprox%20y%280.2%29%2B0.2%5B%280.2%29%5E2%5Ctimes%20y%280.2%29-%5Cfrac12%20%28y%280.2%29%29%5E2%5D)
![\Rightarrow y(0.4)\approx 2.7+0.2[(0.2)^2\times 2.7- \frac12(2.7)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%20%202.7%2B0.2%5B%280.2%29%5E2%5Ctimes%202.7-%20%5Cfrac12%282.7%29%5E2%5D)

Substituting x =0.4 and h= 0.2
![y(0.4+0.2)\approx y(0.4)+0.2[(0.4)^2\times y(0.4)-\frac12 (y(0.4))^2]](https://tex.z-dn.net/?f=y%280.4%2B0.2%29%5Capprox%20y%280.4%29%2B0.2%5B%280.4%29%5E2%5Ctimes%20y%280.4%29-%5Cfrac12%20%28y%280.4%29%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.9926+0.2[(0.4)^2\times 1.9926- \frac12(1.9926)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%20%201.9926%2B0.2%5B%280.4%29%5E2%5Ctimes%201.9926-%20%5Cfrac12%281.9926%29%5E2%5D)

Substituting x =0.6 and h= 0.2
![y(0.6+0.2)\approx y(0.6)+0.2[(0.6)^2\times y(0.6)-\frac12 (y(0.6))^2]](https://tex.z-dn.net/?f=y%280.6%2B0.2%29%5Capprox%20y%280.6%29%2B0.2%5B%280.6%29%5E2%5Ctimes%20y%280.6%29-%5Cfrac12%20%28y%280.6%29%29%5E2%5D)
![\Rightarrow y(0.8)\approx 1.6593+0.2[(0.6)^2\times 1.6593- \frac12(1.6593)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.8%29%5Capprox%20%201.6593%2B0.2%5B%280.6%29%5E2%5Ctimes%201.6593-%20%5Cfrac12%281.6593%29%5E2%5D)

Substituting x =0.8 and h= 0.2
![y(0.8+0.2)\approx y(0.8)+0.2[(0.8)^2\times y(0.8)-\frac12 (y(0.8))^2]](https://tex.z-dn.net/?f=y%280.8%2B0.2%29%5Capprox%20y%280.8%29%2B0.2%5B%280.8%29%5E2%5Ctimes%20y%280.8%29-%5Cfrac12%20%28y%280.8%29%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.8800+0.2[(0.8)^2\times 0.8800- \frac12(0.8800)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%20%200.8800%2B0.2%5B%280.8%29%5E2%5Ctimes%200.8800-%20%5Cfrac12%280.8800%29%5E2%5D)

Therefore the value of y(1)= 0.9152.
Answer:
10.6 miles
Step-by-step explanation:
The corner where Starbucks is located could be considered to be the right angle in a right triangle having legs of 8 miles (distance to you) and 7 miles (distance to your friend). The straight-line distance (d) from you to your friend is the hypotenuse of that triangle. Its length can be found from the Pythagorean theorem.
d² = 8² +7²
d² = 64 +49 = 113
d = √113 ≈ 10.6
You and your friend are about 10.6 miles from each other.