1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
2 years ago
13

Which expression is undefined?

Mathematics
1 answer:
slavikrds [6]2 years ago
6 0

Answer: C

Work: So, after you simplify that equation, it's 8/0. You Cannot divide zero like that. You can divide 0/8, but you can't with 8/0. I hope this wasn't to confusing, and <em>Happy Holidays! :)</em>

You might be interested in
5lbs of apples at 2 lbs for $.80
igomit [66]
$2.00 is the answer...
3 0
2 years ago
Follow the process of completing the square to solve 2x2 + 8x - 12 = 0.
Rom4ik [11]
Please:  Use "^" to denote exponentiation:  <span>2x^2 + 8x - 12 = 0

Reduce this by div. every term by 2:             </span><span>x^2 + 4x - 6 = 0

Here a=1, b=4 and c = -6.  Square half of b, obtaining (4/2)^2 = 4, and add, and then subtract, this 4 to x^2 + 4x - 6:

</span> x^2 + 4x +4  - 4 - 6 = 0.  Rewrite the square as (x+2)^2, obtaining new equation

(x+2)^2 = 10.  Take the sqrt of both sides:   x+2 = plus or minus sqrt(10).

Finally, solve for x:  x = -2 plus or minus sqrt(10).



8 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
2 years ago
Triangle PQR has vertices , , and . It is translated according to the rule . What is the y-value of ?
steposvetlana [31]

Answer:

-10 is the correct answer to the given question .

Step-by-step explanation:

Missing information:

Following question is incomplete there is no information about the vertices and the rules .Following are the complete question that is mention below

Triangle PQR has vertices P(-2, 6), \ Q(-8, 4), and\  R(1, -2). It is translated according to the rule    (x, y)\ -> \  (x\  - \ 2, y\  - 16). What is the y-value of P'?

Now coming to the solution as already mention in the question

The translated rule is (x, y)\  -> (x - 2, \ y -16).

Now calculated the vertices P value according to the rule of translated

P(-2, 6)\\Now \  apply \ the\ translated\ rule \ in\  P\ vertices\\P(-2, 6)->P1(-2-2,\ 6-16)\\P1->(-4,-10)

So -10 is the value of y in P vertices .

6 0
3 years ago
Read 2 more answers
There are 54 students in a class. The Venn diagram below shows how many students play a sport, take a foreign language, do both,
andrew11 [14]

                                     Doesn't play sport

                          Plays sport      |

                                         |         |

                                         V       V

Takes language            |  21  |  17  |

                                      -----------------

Doesn't take language |  12  |  4 |

4 0
2 years ago
Other questions:
  • Which number is a common denominator of 5/6 and 11/12
    5·1 answer
  • The product of a number (n-1) and the number (n+1) is always equal to ?
    5·1 answer
  • Give an example of a balance that has a greater integer value than a balance of -$12, but represents a debt of less than $5.
    5·1 answer
  • Solve -3(2x - 9) = -3. <br> A. 5 <br> B. 4<br> C.-4<br> D.-5
    8·2 answers
  • A bridge is 28 meters long. Find the length of a scale model if the scale is 1 : 550
    13·1 answer
  • Which of these statements best describes the relation shown?
    7·2 answers
  • 18/80 in simplest from
    11·1 answer
  • Find the exact value of sinA in simplest radical form.
    15·1 answer
  • How much money did the store make for her sales
    8·2 answers
  • Find x. Round your answer to the nearest tenth of a degree.<br> X<br> 11<br> 8
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!