<h2>Collision Theory
</h2>
Explanation:
<h3>
The given statement is related to the collision theory -
</h3>
Collision theory was given by William Lewis in 1916.
This theory explains in a qualitative manner that in what way any chemical reaction occurs and the reason for the different reaction rates for different reactions.
<h3>
According to the collision theory -
</h3>
- Molecules must collide in order to react
- Sufficient amount of energy is needed for collisions (kinetic energy) so that the chemical bonds should break
- This energy used is known as the activation energy
- On the increase in the temperature, the kinetic energy of the molecule increases and the molecules move faster and collide with a proper orientation at an increased speed
- This increases the rate of a collision that in turn increases the breaking of the bond
Answer:
Animal was shot in Nunavut, Canada earlier this month by hunters. It resembles a polar bear but has claws and brown paws of a grizzly bear. Experts claim the 'pizzly' or 'grolar' bear is a hybrid between the two. DNA tests revealed it was actually a blonde haired grizzly bear
Explanation:
4.42 g mass of CCl4 is required to prepare a 0.25 m solution using 115 g of hexane.
It's easy to find the molecular mass of a compound with these steps: Determine the molecular formula of the molecule. Use the periodic table to determine the atomic mass of each element in the molecule. Multiply each element's atomic mass by the number of atoms of that element in the molecule.
The molar mass of any compound can be found out by adding the relative atomic masses of each element present in that particular compound.
Hexane is an organic compound, a straight-chain alkane with six carbon atoms and has the molecular formula C₆H₁₄.
Therefore,
⇒ 0.115 g of Hexane x (0.25 mol CCl4/1 mol hexane) x (153.81 g of CCl4/1 mol CCl4) = 4.42g CCl4.
To learn more about CCL4 and Hexane here
brainly.com/question/15156642
#SPJ4
Energy absorbed by Iron block E (iron) = 460.5 J
Energy absorbed by Copper block E (Copper) = 376.8 J
<u>Explanation:</u>
To find the heat absorbed, we can use the formula as,
q = m c ΔT
Here, Mass = m = 10 g = 0.01 kg
ΔT = change in temperature = 400 - 300 = 100 K = 100 - 273 = -173 °C
c = specific heat capacity
c for iron = 460.5 J/kg K
c for copper = 376.8 J/kg K
Plugin the values in the above equation, we will get,
q (iron) = 0.01 kg × 460.5 J/kg K × 100 K
= 460.5 J
q (copper) = 0.01 kg × 376.8 J/kg K × 100 K
= 376.8 J