Answer:
New temperature T2 = 707.5 K (Approx.)
Explanation:
Given:
Old pressure P1 = 2 atm
Old temperature T1 = 283 K
New Pressure P2 = 5 atm
Find:
New temperature T2
Computation:
Using Gay-Lussac law;
P1 / T1 = P2 / T2
So,
2 / 283 = 5 / T2
New temperature T2 = 707.5 K (Approx.)
Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
Answer:
B
Explanation:
Mars atmosphere contains mainly carbon iv oxide, but the greenhouse effect as subdued as there is so little CO2 overall.
Venus as a planet contains 96.5% of carbon iv oxide. it doesn't contain water which can trap the CO2 as we have on earth where the oceans are able to trap the CO2 present and subdue the greenhouse effect. This inability to trap CO2 in Venus prevents infrared rays from escaping and with the fact the Venus is closer to the sun than earth and mars, its surface it extremely hot.
Answer:
Autotrophs are organisms that prepare their own food through the process of photosynthesis, whereas heterotrophs are organisms that cannot prepare their own food and depend upon autotrophs for nutrition.
Explanation:
Btw I searched this up found it on a website called byjus.com. Hope this helps!
Answer:

Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:

Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:

Thus, the total number of molecules turns out:

Regards.