Answer:
t = 6.09 seconds
Explanation:
Given that,
Speed, v = 44.1 cm/s
Distance, d = 269 cm
We need to find the time interval of the marble. Speed is distance per unit time.

Hence, the time interval of the marble is 6.09 seconds.
The answer is 40 kg. m/s.
Formula for momentum:
p=mv
p=(10 kg.)(4 m/s)
So, therefore, the final answer is p=40 kg. m/s.
I hope this helped answer your question. Enjoy your day, and take care!
Answer:
The wavelength is 3500 nm.
Explanation:
d= 
n= 1
θ= 30°
λ= unknown
Solution:
d sinθ = nλ
λ = 
λ = 3500 nm
Answer:
50 N
Explanation:
given,
mass of ball = 1 Kg
initial velocity = 3 m/s
final velocity = 2 m/s
time = 0.10 s
impulse = change in momentum
I = m ( v - u)
I = 1( 2 -(-3))
I = 5 kg.m/s
Force is equal to impulse per unit time
average force =
=
= 50 N
Average force on the floor will be equal to 50 N
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.