<u>Solution-</u>
The two parabolas are,

By solving the above two equations we calculate where the two parabolas meet,

Given the symmetry, the area bounded by the two parabolas is twice the area bounded by either parabola with the x-axis.
![\therefore Area=2\int_{-c}^{c}y.dx= 2\int_{-c}^{c}(16x^2-c^2).dx\\=2[\frac{16}{3}x^3-c^2x]_{-c}^{ \ c}=2[(\frac{16}{3}c^3-c^3)-(-\frac{16}{3}c^3+c^3)]=2[\frac{32}{3}c^3-2c^3]=2(\frac{26c^3}{3})\\=\frac{52c^3}{3}](https://tex.z-dn.net/?f=%5Ctherefore%20Area%3D2%5Cint_%7B-c%7D%5E%7Bc%7Dy.dx%3D%202%5Cint_%7B-c%7D%5E%7Bc%7D%2816x%5E2-c%5E2%29.dx%5C%5C%3D2%5B%5Cfrac%7B16%7D%7B3%7Dx%5E3-c%5E2x%5D_%7B-c%7D%5E%7B%20%5C%20c%7D%3D2%5B%28%5Cfrac%7B16%7D%7B3%7Dc%5E3-c%5E3%29-%28-%5Cfrac%7B16%7D%7B3%7Dc%5E3%2Bc%5E3%29%5D%3D2%5B%5Cfrac%7B32%7D%7B3%7Dc%5E3-2c%5E3%5D%3D2%28%5Cfrac%7B26c%5E3%7D%7B3%7D%29%5C%5C%3D%5Cfrac%7B52c%5E3%7D%7B3%7D)
![So \frac{52c^3}{3}=\frac{250}{3}\Rightarrow c=\sqrt[3]{\frac{250}{52}}=1.68](https://tex.z-dn.net/?f=So%20%5Cfrac%7B52c%5E3%7D%7B3%7D%3D%5Cfrac%7B250%7D%7B3%7D%5CRightarrow%20c%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B250%7D%7B52%7D%7D%3D1.68)
1.5*100% = 150%
The book is worth 150% of the original amount.
I think you’re answer is option 1: 3x^2+5.
Explanation:
Evaluate f(x^2+2) by substituting in the value of g into f.
f(x^2+2)=3(x^2+2)-1
Then apply distributive property.
f(x^2+2)=3x^2+3•2-1
Then multiply 3 by 2.
f(x^2+2)=3x^2+6-1
Then subtract 1 from 6.
f(x^2+2)=3x^2+5
Answer:
8 is the required answer.
Step-by-step explanation:
In a polynomial, the leading term is the term with the highest power of x.
is the leading term. So, coefficient is 8.
Best Regards!
Answer:
1/52
Step-by-step explanation:
4/208=1/52