1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
2 years ago
13

A hungry elf ate 35 of your muffins. That was 710 of all of them! With how many did you start?

Mathematics
1 answer:
KengaRu [80]2 years ago
6 0

Answer:

2094.5 muffins

Step-by-step explanation:

The problem is a little bit messy, but i’m guessing you meant that the elf ate 35% of the muffins, which 35% is 710 muffins. so since 35% of muffins is 710 muffins, let’s multiply that by 2 so we can get 70%.

so 710 x 2 is 1420. so 70% of the muffins is 1420 muffins! sadly that’s not all of the muffins. we’re still missing another 30%. since we don’t know how many muffins are in 30%, let’s just take 710 muffins - 5%. when you do that you get 674.5. so now that we know how much is in 30%, let’s take 1420 + 674.5. when you do that you get 2094.5! so you started off with 2094 and a half muffins!

You might be interested in
find the spectral radius of A. Is this a convergent matrix? Justify your answer. Find the limit x=lim x^(k) of vector iteration
Natasha_Volkova [10]

Answer:

The solution to this question can be defined as follows:

Step-by-step explanation:

Please find the complete question in the attached file.

A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right]

now for given values:

\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\

\to  (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to  (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} -  \frac{1}{4}] =0 \\\\\to  (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\

\to \lambda_1=\lambda_2 =\frac{1}{2}\\\\\to \lambda_3 = \frac{1}{4} \\\\\to A = max {|\lambda_1| , |\lambda_2|, |\lambda_3|}\\\\

       = max{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}}\\\\= \frac{1}{2}\\\\(A) =\frac{1}{2}

In point b:

Its  

spectral radius is less than 1 hence matrix is convergent.

In point c:

\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) =   \left(\begin{array}{c}3&1&2\end{array}\right)  , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\  \to x^{(k+1)} =  \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right]  \\\\

after solving the value the answer is

:

\lim_{k \to \infty} x^k=o  = \left[\begin{array}{c}0&0&0\end{array}\right]

4 0
3 years ago
Solve the literal equation for x: g= 4x+5xy
Andreas93 [3]

The literal equation for x is \frac{g}{4+5y} given that g= 4x+5xy

The subject of a formula is a way of representing a variable in terms of other variables.

Given the equation

g= 4x+5xy

Factor out the common variable x

g= x(4+5y)

Divide both sides by 4+5y

\frac{g}{4+5y} =\frac{x(4+5y)}{4+5y} \\\frac{g}{4+5y} = x\\Swap\\x = \frac{g}{4+5y}

This shows that the literal equation for x is \frac{g}{4+5y}

Learn more here: brainly.com/question/21140562

3 0
3 years ago
What is 6/9 in simplest form
PIT_PIT [208]
Your answer is 2/3. As a decimal it is .66 or rounded to .67
5 0
3 years ago
Read 2 more answers
Answer for brainilest and 10 points
lions [1.4K]
Rational number I believe
5 0
3 years ago
What’s is the correct answer???
dangina [55]

The correct answer would be c. Hope this helps!

5 0
3 years ago
Other questions:
  • Which figure has reflection symmetry?
    13·2 answers
  • Need help on question 22
    6·2 answers
  • 1. Locate a menu for your favorite restaurant and pick three items for yourself and each friend.
    12·2 answers
  • What are 3 multiples and 3 factors for 24
    13·1 answer
  • Avery has a total of $12.50 in her piggy bank at home. Each week she takes out $1.25 to ride the city bus. Write an equation rep
    10·1 answer
  • Y = x2 - 6x - 8
    14·1 answer
  • Answer this question for brainliest and 20 points
    6·1 answer
  • Help pls and no links
    8·1 answer
  • MERRY CHRISTMAS!!! pls help me with this and you will get the Christmas present you wanted!!plus brainlist lol
    9·1 answer
  • I am a number. I am the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!