Answer:
Value that the spring constant k = 12Mg / h
Explanation:
According to 2nd law of Newton:
upward force of the spring= F
The weight of the elevator W = mg
F = Mg = M(5g)
==> F =6Mg.
As the spring is compressed to its maximum distance ie s,the maximum upward acceleration comes just , Hence
F =ks = 6Mg
==> s = 6Mg/k
We have gravitational potential energy turning into elastic potential of the spring as the elevator starts at the top some distance h from the spring, and undergoes a total change in height equal to h + s, so:
Mg(h+s) = 1/2ks2
And plugging in our expression for s:
Mg(h+6Mg/k)= 1/2k(6Mg / k)2
gh + 6M2g2/k = 1/2k(36M2g2 /k2)
Mgh +6M2g2/k = 1/2k(36M2g2 /k2)
gh + 6Mg2/k = 18Mg2 / k
gh = 12Mg2 / k
h = 12Mg / k
k = 12Mg / h
Answer:
Answer is C. Both technicians A and B.
Refer below.
Explanation:
Two technicians are discussing the testing of a catalytic converter. Technician A says that a vacuum gauge can be used and observed to see if the vacuum drops with the engine at 2500 RPM for 30 seconds. Technician B says that a pressure gauge can be used to check for backpressure. The following technician is correct:
Both technicians A and B
A uniform solid sphere rolls down an incline without slipping<span>. </span>If the linear acceleration of the center of mass of the sphere is 0.19g<span>, </span>then what is the angle the incline makes with the horizontal<span>?</span>
Hotter things have more heat energy than colder things. That's because the atoms or molecules move around faster in hot things (red, right) than they do in cold things (blue, left). This idea is called the kinetic theory.
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm