We know the total distance and individual times, so we can sum and equate total distance.
Let
E=speed heading east
E+45=speed heading south
then
4(E+45)+6E=3370 miles
Solve for E:
4E+180+6E=3370
10E=3370-180=3190 mph
E=319 mph.
Function is p(x)=(x-4)^5(x^2-16)(x^2-5x+4)(x^3-64)
first factor into (x-r1)(x-r2)... form
p(x)=(x-4)^5(x-4)(x+4)(x-4)(x-1)(x-4)(x^2+4x+16)
group the like ones
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
multiplicity is how many times the root repeats in the function
for a root r₁, the root r₁ multiplicity 1 would be (x-r₁)^1, multility 2 would be (x-r₁)^2
so
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
(x^2+4x+16) is not on the real plane, but the roots are -2+2i√3 and -2-2i√3, each multiplicity 1 (but don't count them because they aren't real
baseically
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
0.55^2 + cos^2 = 1
cos^2 = 1 - 0.55^2
cos^2 = 1 - 0.3025
cos^2 = 0.6975
cos = 0.8351
Answer:
Step-by-step explanation:
Provef
In the ∆VXW and ∆ZXY given that
WX~= YX, VX~=ZX and the included angleVXW = the included angleZXY (vertically opposite angles are equal to each other)
Therefore
∆VXW ~= ∆ZXY [SAS Theorem]
Proven