1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
10

Can someone please explain to me how to add and subtract integers without using a number line? What's the rule for it?

Mathematics
1 answer:
irga5000 [103]3 years ago
4 0
ADD:
If both numbers are positive or negative then you have to add them if its a negative then your answer is a negative.6+1=7;-4+-1=-5

If one of the numbers are negative and the other one is positive then you will have to subtract.Then find the bigger number in the problem if its a negativie then your answer is a negative if your number is positive then your answer is a positive.-9+1=-8;4+-3=1

Sorry Don't Know What The Rules For Subtraction.But Hope This Helped You For Adding.
You might be interested in
Gemma and Leah are both jewelry makers. They made 39 necklaces. Each necklace has exactly 104 beads on it. How many beads did th
Kay [80]

Answer:

4056

Step-by-step explanation:

39 necklaces

104 beads/necklace

number of beads = number of necklaces * number of beads per necklace

number of beads = 39 * 104 = 4056

8 0
3 years ago
Find the slope of the line y= -8/5x + 2
VikaD [51]

Step-by-step explanation:

Given

y = - 8 /5 x + 2

Comparing the given equation with y = mx + c

slope (m) = - 8/5

Hope it will help :)

7 0
3 years ago
Winston and Sally are scuba diving. Winston is 27.77 meters below the surface of the ocean, and Sally is 2.10 meters deeper than
Nitella [24]

Answer:

-29.87

Step-by-step explanation:

8 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Simplify
OlgaM077 [116]

Answer:

see below

Step-by-step explanation:

\frac{x-1}{x^2-3x+2}+ \frac{x-2}{x^2-5x+6} +\frac{x-5}{x^2-8x+15}

we need to simplify that

x^2-3x+2=(x-1)(x-2)\\\\x^2-5x+6=(x-2)(x-3)\\\\x^2-8x+15=(x-3)(x-5)

so we can continue

\frac{x-1}{(x-1)(x-2)}=\frac{1}{x-2}\\\\\frac{x-2}{(x-2)(x-3)} =\frac{1}{x-3}\\\\\frac{x-5}{(x-3)(x-5)} =\frac{1}{x-3}

and we can put all together

\frac{1}{x-2}+ \frac{1}{x-3}+ \frac{1}{x-3}\\\\\frac{1}{x-2} +\frac{2}{x-3}\\\\\frac{x-3}{(x-3)(x-2)}+ \frac{2(x-2)}{(x-2)(x-3)} \\\\\frac{x-3+2x-4}{(x-3)(x-2)}\\\\\frac{3x-7}{x^2-5x+6}

3 0
3 years ago
Other questions:
  • When you roll two six-sides dice, you get the following 11 combined outcomes: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. What are th
    10·1 answer
  • Find the midpoint of the line segment with endpoints ( -1, 1 ) and ( 5, -5 )
    7·1 answer
  • sound intensity is inversely proportional to the square of the distance from the source - the farther from the source you are, t
    14·1 answer
  • Write a system of equations to describe the situation below, solve using substitution, and fill in the blanks.
    15·1 answer
  • sharon pays $78 sales tax on a new camera. If the sales tax rate is 6.5% what was the cost of the camera
    8·1 answer
  • An item is regularly priced at $90. It is on sale for 40% off the regular price. How much (in dollars) is discounted from the re
    9·1 answer
  • What is the solution of 1
    10·1 answer
  • I need an Answer Immediately,pls!!!!!!
    14·2 answers
  • What is another name for Plane P below?
    15·1 answer
  • Does this graph represent a function?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!