<u>Answer:</u>
The force F applied to the handle = 330.03 N
<u>Explanation:</u>
The force can be resolved in to two, horizontal component and vertical component. If θ is the angle between horizontal and applied force we have
Horizontal component of force = F cos θ
Vertical component of force = F sin θ
In this problem normal force exerted on the suitcase is 160 N, that is vertical component of force = 160 N and angle θ = 29⁰.
So, F sin 29 = 160
F = 330.03 N
The force F applied to the handle = 330.03 N
It’s c Because is the one the makes the most sense
Answer:
The acceleration of the box is 0.67 m/s²
Explanation:
Given that,
Mass of box = 30.0 kg
Horizontal force = 230 N
Friction force = 210 N
We need to calculate the acceleration of the box
Using balance equation


Where, F = horizontal force
=frictional force
m= mass of box
a = acceleration
Put the value into the formula


Hence, The acceleration of the box is 0.67 m/s²
Answer:
d) the amount of work is the same whether the bag is moved all at once or in two stages, provided the total height lifted is the same in either case.
Explanation:
While moving the bag to the shelf in one shot we can say that the total work done is given as

here we know that
2H = total height raised by the bag
now when we raise the bag to first shelf and then move it to next shelf
then we will have
![W = W_1 + W_2[tex][tex]W = mgH + mgH](https://tex.z-dn.net/?f=W%20%3D%20W_1%20%2B%20W_2%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%20mgH%20%2B%20mgH)

so the correct answer will be
d) the amount of work is the same whether the bag is moved all at once or in two stages, provided the total height lifted is the same in either case.