Electromagnetic radiation are represented in waves. Each type of wave has a certain shape and length. The distance between two peaks in a wave is called the wavelength. This value is equal to the speed of light divided by the frequency.
Wavelength = c/f
Wavelength = 3x10^8 / <span>5.42x10^15
</span><span>Wavelength = 5.54 x 10^-8 m = 55.35 nm</span>
The time taken for the two balls to hit each other is 8 s.
The given parameters:
- <em>Acceleration of the rocket, a = 2 m/s²</em>
- <em>Length of the chamber, s = 4 m</em>
- <em>Speed of the first ball, = V1 = 0.3 m/s</em>
- <em>Speed of the second ball, V2 = 0.2 m/s</em>
The time taken for the two balls to hit each other is calculated by applying relative velocity formula as shown below;

Thus, the time taken for the two balls to hit each other is 8 s.
Learn more about relative velocity here: brainly.com/question/17228388
Answer:
The sum of the lengths of the sides is 2292 yards and the sum of the lengths of the triangle is 3056 yards
Explanation:
Since y represents the length of fence that is opposite (parallel) to the river and x represent the length of fence perpendicular to the river.
Therefore since we can use 3,056 yards of fencing
Side perpendicular to the river = x and,
Side opposite to the river = y = 3056 - 2x
The area of the rectangle formed (A) = Perpendicular side × Parallel side
∴ A = x(3056 - 2x) = 3056x - 2x²
A = 3056x - 2x²
To maximize the area, A' (dA/dx) = 0
∴ A' = 3056 - 4x = 0
3056 - 4x = 0
4x = 3056
x = 764 yards
y = 3056 - 2x = 3056 - 2(764) = 1528 yards.
Side perpendicular to the river = 764 yards and,
Side opposite to the river = 1528 yards
The sum of the lengths of the sides = 764 + 1528 = 2292 yard and the sum of the lengths of the triangle = 764 + 764 + 1528 = 3056 yards
Answer:
The answer is Insulator, Conductor
Explanation:
A/An Insulator is a material in which charges will not move easily, whereas a/an Conductor is a material that allows charges to move about easily
Answer:
the magnitude of the average contact force exerted on the leg is 3466.98 N
Explanation:
Given the data in the question;
Initial velocity of hand v₀ = 5.25 m/s
final velocity of hand v = 0 m/s
time interval t = 2.65 ms = 0.00265 s
mass of hand m = 1.75 kg
We calculate force on the hand F
using equation for impulse in momentum
F
× t = m( v - v₀ )
we substitute
F
× 0.00265 = 1.75( 0 - 5.25 )
F
× 0.00265 = 1.75( - 5.25 )
F
× 0.00265 = -9.1875
F
= -9.1875 / 0.00265
F
= -3466.98 N
Next we determine force on the leg F
Using Newton's third law of motion
for every action, there is an equal opposite reaction;
so, F
= - F
we substitute
F
= - ( -3466.98 N )
F
= 3466.98 N
Therefore, the magnitude of the average contact force exerted on the leg is 3466.98 N