Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Radio waves. Giant satellite-dish antennas pick up long-wavelength, high-frequency radio waves. ...
Microwaves. Because cosmic microwaves can't get through the whole of Earth's atmosphere, we have to study them from space. ...
Infrared. ...
Visible light. ...
Ultraviolet light. ...
X rays. ...
Gamma rays.
Answer:

Explanation:
The motion of ballistic pendulum is modelled by the appropriate use of the Principle of Energy Conservation:

The final velocity of the system formed by the ballistic pendulum and the bullet is:



Initial velocity of the bullet can be calculated from the expression derived of the Principle of Momentum:


Answer:
c. initial (x and y)
Explanation:
When a projectile is launched at a velocity with a launch angle, to solve it, we must first resolve the initial velocity into the x and y components. To do this will mean we have to treat it like a triangle due to the launch angle and the direction of the projectile.
Therefore, we will have to make use of trigonometric ratios which is also known by the mnemonic "SOH CAH TOA"
Thus, this method resolves the initial x and y velocities.
Hi there, the correct answer is C. Reactivity. I know this is the correct answer because I took this quiz recently. Color, boiling point, and density are all examples of physical properties.