Answer:
<em>The force of friction acting on the block has a magnitude of 15 N and acts opposite to the applied force.</em>
Explanation:
<u>Net Force
</u>
The Second Newton's law states that an object acquires acceleration when an unbalanced net force is applied to it.
The acceleration is proportional to the net force and inversely proportional to the mass of the object.
If the object has zero net force, it won't get accelerated and its velocity will remain constant.
The m=2 kg block is being pulled across a horizontal surface by a force of F=15 N and we are told the block moves at a constant velocity. This means the acceleration is zero and therefore the net force is also zero.
Since there is an external force applied to the box, it must have been balanced by the force of friction, thus the force of friction has the same magnitude acting opposite to the applied force.
The force of friction acting on the block has a magnitude of 15 N opposite to the applied force.
Answer:
Explanation:
tha question is too hard simplfy it fast
Answer:
In the explanation :)
Explanation:
Heat is a concept that is important to understand in various engineering fields. It is particularly relevant for civil, mechanical and chemical engineers because heat transfer plays a key role in material selection, machinery efficiency and reaction kinetics, respectively.
Answer:
v₂ = 97.4 m / s
Explanation:
Let's write the Bernoulli equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Index 1 is for tank and index 2 for exit
We can calculate the pressure in the tank with the equation
P = F / A
Where the area of a circle is
A = π r²
E radius is half the diameter
r = d / 2
A = π d² / 4
We replace
P = F 4 / π d²2
P₁ = 397 4 /π 0.058²
P₁ = 1.50 10⁵ Pa
The water velocity in the tank is zero because it is at rest (v1 = 0)
The outlet pressure, being open to the atmosphere is P1 = 1.13 105 Pa
Since the pipe is horizontal y₁ = y₂
We replace on the first occasion
P₁ = P₂ + ½ ρ v₂²
v₂ = √ (P1-P2) 2 / ρ
v₂ = √ [(1.50-1.013) 10⁵ 2/1000]
v₂ = 97.4 m / s