1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
8

Which of the following expressions are equivalent to 6 + (-4) - 5

Mathematics
1 answer:
Mila [183]3 years ago
6 0

Answer:

B and C

Step-by-step explanation:

All you need to do is find the answer for all of them and see which ones match

Original:

6 + (-4) - 5

6 - 4 - 5

2 - 5

<u><em>-3</em></u>

This is the answer for the original expression, now we need to see which one is the correct match....

A. -(-6 + 4 ) - 5

2 negatives being subtracted gives you a positive

6 + 4 - 5

10 - 5

5

Incorrect, so now we know its not A

B. 6 - 4 - ( -5)

Again 2 negatives give you a positive

6 - 4 + (5)

6 - 9

-3

Correct, so now we know its B

C. 6 - (4 + 5)

PEMDAS so do the parenthesis first

6 - 9

-3

Correct, so now we it's C.

D. 6 + 4 - 56

10 - 56

-46

Incorrect, so now we know its not D

E. -(-6) + (-4) - (-5)

Again, 2 negatives equal a positive

6 - 4 + 5

2 + 5

7

Incorrect so now we know its not E

The correct answer is C

Hope this helped!

Have a supercalifragilisticexpialidocious day!

You might be interested in
The Mayors of two small towns that adjoin a large community have engaged in an argument on which of their cities is safer, with
Lelu [443]

Answer:

1. City A: 150 violent crimes per 100,000 residents.

   City B: 161 violent crimes per 100,000 residents.

2. City A

Step-by-step explanation:

City A:

Population = 123,000

Violent crimes = 185

Violent crimes per 100,000 people:

V_{100k} = \frac{185*100,000}{123,000} \\V_{100k} = 150

City B:

Population = 84,000

Violent crimes = 135

Violent crimes per 100,000 people:

V_{100k} = \frac{135*100,000}{84,000} \\V_{100k} = 161

1. City A: 150 violent crimes per 100,000 residents.

   City B: 161 violent crimes per 100,000 residents.

2. Even though it has a bigger number of crimes, City A has the lowest crime rate since its population is larger.

5 0
3 years ago
How much tax is withheld from 53,620 if tax rate is 7%.?
Tems11 [23]

The withheld tax is 3753.4

To get this you do 53,620 x .07

3 0
3 years ago
Read 2 more answers
Anyone want to ch at?
algol13

Answer:

sure?

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Two sides of an isosceles triangle are unknown. We can say both are X ft
Y_Kistochka [10]

Answer:

c.12

Step-by-step explanation:

you do 33-9 which gets you 24. You then divide that by 2 so you get 12.

3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Other questions:
  • Evaluate the following expression b=3 c=-3 (b-c)(c+2)
    11·1 answer
  • In the circle, measure of Arc BC = 62°. The diagram isn't drawn to scale. what is the measure of Arc BCP?
    9·2 answers
  • Explain how you can find a fraction that is theequivalent to 1/4
    12·2 answers
  • What are the First 4 terms 12-n
    8·1 answer
  • PLEASE HELP SUPER EASY 10 POINTS DUE TOMARROW
    13·1 answer
  • Which of the following are solutions to | x+31= 4x - 7? Check all that app
    13·1 answer
  • Can you please help me out
    6·1 answer
  • . What is the difference between a right triangle and a obtuse triangle?​
    5·1 answer
  • Plz plz I need help plz plz really fast plz plz I will cry if u help me giving 25points
    5·1 answer
  • Worth 100 points<br><br> whats 2 + 2 + 2 + 2 + 2 ?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!