Answer:
direction
Explanation:
because particles surround the bell, so when the bell vibrates, it causes particles surrounding it to vibrate back and forth vigorously. as these particles vibrate they collide with the neighbouring particles, passing on the energy.
hope this is what you are asking, if not please report it so that someone else gets to try it.
Because one pole of the Earth's axis of rotation (the North one) points
almost exactly toward Polaris.
If Polaris had a pimple or a bump somewhere on its edge, you'd see
the bump rotate around the whole edge, like a clock, once a day. But
the whole star appears to stay in one place, because our axis points to it.
Electrical energy in the charger and cable
Chemical energy in the battery of the mobile phone
Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
Answer:
Speed of both blocks after collision is 2 m/s
Explanation:
It is given that,
Mass of both blocks, m₁ = m₂ = 1 kg
Velocity of first block, u₁ = 3 m/s
Velocity of other block, u₂ = 1 m/s
Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :



v = 2 m/s
Hence, their speed after collision is 2 m/s.