Answer:

Explanation:
To solve this equation we will have to consider that the bubble is filled with an Ideal Gas and as such we can use the Ideal Gas Law

Where
= Pressure
= Volume
= Moles
= Ideal Gas Constant
= Temperature
Now since we know that the value for the temperature and moles is constant we can simply use Boyles Law for the two states

Let us look at the two states
State 1 (at top)
Pressure = 
Volume = 
State 2 (at bottom)
Pressure = 
Where
= Density of liquid (1000 kg/m³)
= Acceleration due to gravity (9.8 m/s²)
= Height of liquid (0.200 m)
Pressure = 
Volume = 
Inputting these values into the Boyles Law

I see a pillow
But you see...this bobcat
Cute ain’t it?
Answer:
K = 13448.64eV
Explanation:
(a) In order to calculate the kinetic energy of the electrons, to "see" the atom, you take into account that the wavelength of the electrons must be of the order of the resolution required (0.010nm).
Then, you first calculate, by using the Broglies' relation, the momentum of the electron associated to a wavelength of 0.010nm:
(1)
p: momentum of the electron
h: Planck's constant = 6.626*10^-34 Js
λ: wavelength = 0.010nm
You replace the values of the parameters in the equation (1):

With this values of the momentum of the electron you can calculate the kinetic energy of the electron by using the following formula:
(2)
m: mass of the electron = 9.1*10^-31 kg

In electron volts you obtain:

The kinetic energy required for the electrons must be, at least, of 13448.64 eV