She would divide that mass of each element by it molar mass the answer is C <span />
Answer:
65.4%
Explanation:
The redox reaction is a 1:1:1 reaction because the reagents suffer a double displacement reaction, and the substance that is substituted have the same charge (H+ and Br-), thus, we first need to know which of the reagents is the limiting.
Let's test the 4-nitrobenzaldehyde as the limiting. The mass needed for sodium borohydride (m) is the mass given of 4-nitrobenzaldehyde multiplied by the stoichiometric mass of sodium borohydride divided by the stoichiometric mass of 4-nitrobenzaldehyde. The stoichiometric mass is the number of moles in the stoichiometric representation (1:1:1) multiplied by the molar mass, so:
m = (4.13 * 37.83*1)/(151.12*1)
m = 1.034 g
So, the mass needed of the other reagent is larger than the mass that was given, so, it will be the limiting, and the stoichiometric calculus must be done with it.
The mass of the product that was expected is then:
m = (0.700*153.14*1)/(37.83*1)
m = 2.83 g
The percent yield is the mass that was formed divided by the expected mass, and then multiplied by 100%:
%yield = (1.85/2.83)*100%
%yield = 65.4%
Sample means for solutions 1 and 2 are 19.27 and 10.32 respectively
In semiconductor manufacturing,
The total for answer 1 is given by:
9.7+10.5+9.4+10.6+9.3+10.7+9.6+10.4+10.2+10.5 = 192.7
The sample size is 10 and provides us with
192.7/10 = 19.27
For solution 2, the sum is given by:
10.6+10.3+10.3+10.2+10.0+10.7+10.3+10.4+10.1+10.3 = 103.2
The sample size is 10, this gives us
103.2/10 = 10.32
The total for answer 2 is given by:
10.6+10.3+10.3+10.2+10.0+10.7+10.3+10.4+10.1+10.3 = 103.2
The sample size is 10 and provides us with
103.2/10 = 10.32
Learn more about semiconductor manufacturing here brainly.com/question/22779437
#SPJ4.
In semiconductor manufacturing, wet chemical etching is often used to remove silicon from the backs of wafers prior to metalization. The etch rate is an important characteristic in this process and is known to follow a normal distribution. Two different etching solutions have been compared, using two random samples of 10 wafers for each solution. Assume the variances are equal. The etch rates are as follows (in mils per minute): Solution 1 Solution 2 9.7 10.6 10.5 10.3 9.4 10.3 10.6 10.2 9.3 10.0 10.7 10.7 9.6 10.3 10.4 10.4 10.2 10.1 10.5 10.3 Calculate sample means of solution 1 and solution 2
Answer:
that is my answer hope it helps you out
Explanation:
i got 1.40 for my answer
Answer:
0.0000004262m
Explanation:
i just looked up a converter.