1 L ------- 1000 cm³
1.45 L ----- ???
1.45 * 1000 = 1450 cm³ ( volume )
Density = 0.710 g/cm³
mass = in Kg
m = D * V
m = 0.710 * 1450
m = 1029.5 g
1 Kg ------- 1000 g
kg -------- 1029.5 g
mass = 1029.5 / 1000
mass = 1.0295 Kg
hope this helps!
Answer:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Explanation:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Answer:
We can make 10 percent solution by volume or by mass. A 10% of NaCl solution by mass has ten grams of sodium chloride dissolved in 100 ml of solution. Weigh 10g of sodium chloride. Pour it into a graduated cylinder or volumetric flask containing about 80ml of water.
Explanation:
have a good day
First, we need to get moles of NaOH:
when moles NaOH = volume * molarity
= 0.02573L * 0.11 M
= 0.0028 moles
from the reaction equation:
H3PO4(aq) + 3NaOH → 3 H2O(l) + Na3PO4(aq)
we can see that when 1 mol H3PO4 reacts with→ 3 mol NaOH
∴ X mol H3PO4 reacts with → 0.0028 moles NaOH
∴ moles H3PO4 = 0.0028 mol / 3 = 9.4 x 10^-4 mol
now we can get the concentration of H3PO4:
∴[H3PO4] = moles H2PO4 / volume
= 9.4 x 10^-4 / 0.034 L
= 0.028 M
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>