Answer:
The answer is no.
Explanation:
The surface of earth does not always stay the same as we know earth constantly moves and the surface of earth is constantly remodeled by various geological processes.
Explanation:
Let us assume that the ratio for the given reaction is 1:1.
Therefore, we will calculate the moles of
as follows.
Moles of
solution = molarity × volume (L)
= 0.0440 M × 0.014 L
= 0.000616 moles
Moles of excess EDTA = 0.000616 moles
Also, the initial moles of EDTA will be calculated as follows.
Total initial moles of EDTA = 0.0600 M × 0.025 L
= 0.0015
Therefore, moles of EDTA reacted with
will be as follows.
= 0.0015 - 0.000616
= 0.00088 moles
Since, we have supposed a 1 : 1 ratio between
and EDTA
.
So, moles of
= 0.00088 moles
Now, we will calculate the molarity of
as follows.
Molarity of
solution =
=
= 0.015 M
Thus, we can conclude that the original concentration of the
solution is 0.015 M.
Answer:

Explanation:
Hello,
In this case, since we can consider hydrogen gas as an ideal gas, we check the volume-pressure-temperature-mole relationship by using the ideal gas equation:

Whereas we are asked to compute the moles given the temperature in Kelvins, thr pressure in atm and volume in L as shown below:

Best regards.
8.25 grams of O2 has 0.258 moles of Oxygen. Here's how you figure that out:
Oxygen is one of the 7 diatomic elements, so it is normally O2.
<span>You find it's molar mass (or mass for </span>one mole<span> of it) by adding up two of the masses from the Periodic Table.</span>