Answer: m = 17.5 g Cl
Explanation: To find the mass of Cl we will need to convert the moles of Cl to mass using the relationship of 1 mole = molar mass of Cl.
0.500 mole Cl x 35 g Cl / 1 mole Cl
= 17. 5 g Cl
This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.
Answer:
In this phenomenon we talk about ideal gases, that is why in these equations the constant is the number of moles and the constant R, which has a value of 0.082
Explanation:
The complete equation would have to be P x V = n x R x T
where n is the number of moles, and if it is not clarified it is because they remain constant, as the question was worded.
On the other hand, the symbol R refers to the ideal gas constant, which declares that a gas behaves like an ideal gas during the reaction, and its value will always be the same, which is why it is called a constant. The value of R = 0.082.
The ideal gas model assumes that the volume of the molecule is zero and the particles do not interact with each other. Most real gases approach this constant within two significant figures, under pressure and temperature conditions sufficiently far from the liquefaction or sublimation point. The real gas equations of state are, in many cases, corrections to the previous one.
The universal constant of ideal gases is not a fundamental constant (therefore, choosing the temperature scale appropriately and using the number of particles, we can have R = 1, although this system of units is not very practical)
Answer:
Calibration curves are used to understand the instrumental response to an analyte, and to predict the concentration of analyte in a sample.
A cation will not replace an anion in a compound because the two positively-charged ions will repel each other.
<h3>Ions</h3>
Ions are atoms or group of atoms possessing an electrical charge.
- Positively-charged ions are known as cations.
- Negatively-charged ions are known as anions.
<h3>Ionic compounds</h3>
Ionic compounds are compounds which are composed of oppositely charged ions held together by strong electrostatic forces of attraction between the oppositely charged ions.
- From law of electrostatics, like charges repel and unlike charges attract.
If a cation replaces an anion, the compound would have two l positive charges which will repel each other.
Therefore, a cation will not replace an anion in a compound because the two positively-charged ions will repel each other.
Learn more about ions and electrostatics at: brainly.com/question/13690700