Answer:
Frequency of sound wave = 198.83 hertz (Approx.)
Explanation:
Given:
Velocity of sound wave in air = 340 m/s
Wavelength = 1.71 meter
Find:
Frequency of sound wave
Computation:
Frequency = Velocity / Wavelength
Frequency of sound wave = Velocity of sound wave in air / Wavelength
Frequency of sound wave = 340 / 1.71
Frequency of sound wave = 198.8304
Frequency of sound wave = 198.83 hertz (Approx.)
Answer:

Explanation:
<u>Net Force</u>
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The m=200 kg crate is pushed horizontally with a force Fa=700 N. The friction force opposes motion and a horizontal net force appears causing the acceleration.
The forces on the vertical direction are in balance since the crate does not accelerate in that direction, thus the weight and the normal force are equal:
N = W = mg
The friction force can be calculated by using the coefficient of friction μ:

Calculating the normal force:
N = 200 * 9.8 = 1,960 N
The friction force is:


The horizontal net force is:


Finally, the acceleration is computed:


Answer:
The ocean waves is a mechanical wave that transmits mechanical energy in the wave by the synchronized and repeated oscillation of the waters about an equilibrium level such that as the wave approaches the shoreline, and the water depth decreases, the height of the wave also increases reflecting the effective transmission of energy while the medium which is the water through which the wave propagates, move back and forth within a small region
Explanation:
A mechanical wave like other waves is the oscillation of a field about an equilibrium level. In mechanical waves, the field consists of the oscillating matter such that the wave transmits energy through a medium. The displacement of the medium through which the wave energy is limited such that the wave energy is conserved to travel far.
I believe the answer is the second option.
Answer:

Explanation:
I = Hearing intensity = 
A = Area = 
d = Diameter = 7.9 mm
r = Radius = 
Power is given by

t = Time the eardrum is exposed to sound = 1 second
Energy is given by

The energy transferred to the eardrum is 