<h2><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>:-</h2>
What is Newton's second law of motion?
<h2><u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>:-</h2>
Newton's second law of motion states that the rate of change of momentum is directly proportional to the applied force and the direction of change of momentum takes place towards direction of applied force.
<h3>
What do you come to know from Newton's second law of motion?</h3>
1. Concept of Momentum.
2. Measurement of Force.
_____________________________________
<h3 /><h3 /><h3 /><h3>
.</h3>
Answer:
0.8%
Explanation:
We are given;
Number of oscillations; n = 20
Time taken; t = 25 s
Formula for period of oscillation;
T = t/n = 25/20 = 1.25 s
We are told that the least count is 0.2 s. Thus, error is; ΔT = 0.2 s
percentage error in the measurement of time is given by;
(0.2/(20 × 1.25)) × 100% = 0.8%
Answer:
<h2>2.35 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
force = 0.49 × 4.8 = 2.352
We have the final answer as
<h3>2.35 N</h3>
Hope this helps you
Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:74.33 feet per sec
Explanation:
Given
Police car is 50 feet side of road
Red car is 140 feet up the road
Distance between them is decreasing at the rate of 70 feet per sec
From figure
z=148.66 feet
as the red car is moving
therefore its velocity magnitude is given by