Answer:
Step-by-step explanation:
The time is inversely related to the number of people working so that as the number of people working increases, the time required decreases
t = k p
divide both sides by p
t/p =k
Answer:
exponent of x is 33
exponent of y is 0
Step-by-step explanation:
you need to combine all powers (exponents) of x, and all exponents of y separately.
remember : x to the power of a divided by x to the power of b is x to the power of (a-b).
when multiplying, the "-" turns into a "+".
so, we have actually for x the exponent calculation :
8 - 14 -(-39) = 8 - 14 + 39 = 33
so, x³³ remains.
and for the y exponents
-26 -(-5) -(-21) = -26 + 5 + 21 = 0
so, all the y expressions eliminate each other and y⁰ remains.
Check the picture below on the left-side.
we know the central angle of the "empty" area is 120°, however the legs coming from the center of the circle, namely the radius, are always 6, therefore the legs stemming from the 120° angle, are both 6, making that triangle an isosceles.
now, using the "inscribed angle" theorem, check the picture on the right-side, we know that the inscribed angle there, in red, is 30°, that means the intercepted arc is twice as much, thus 60°, and since arcs get their angle measurement from the central angle they're in, the central angle making up that arc is also 60°, as in the picture.
so, the shaded area is really just the area of that circle's "sector" with 60°, PLUS the area of the circle's "segment" with 120°.

![\bf \textit{area of a segment of a circle}\\\\ A_y=\cfrac{r^2}{2}\left[\cfrac{\pi \theta }{180}~-~sin(\theta ) \right] \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=6\\ \theta =120 \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20segment%20of%20a%20circle%7D%5C%5C%5C%5C%0AA_y%3D%5Ccfrac%7Br%5E2%7D%7B2%7D%5Cleft%5B%5Ccfrac%7B%5Cpi%20%5Ctheta%20%7D%7B180%7D~-~sin%28%5Ctheta%20%29%20%20%5Cright%5D%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0Ar%3D6%5C%5C%0A%5Ctheta%20%3D120%0A%5Cend%7Bcases%7D)