Vertical Angles: Theorem and Proof
Theorem: In a pair of intersecting lines the vertically opposite angles are equal. It can be seen that ray \overline{OA} stands on the line \overleftrightarrow{CD} and according to Linear Pair Axiom, if a ray stands on a line, then the adjacent angles form a linear pair of angles.
Answer:
<em>$</em><em>1</em><em>0</em><em>9</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>difference</em><em> </em><em>between</em><em> </em><em>both</em><em> </em><em>the</em><em> </em><em>bills</em>
Step-by-step explanation:
<em>Difference</em><em> </em><em>=</em><em>$</em><em>(</em><em>3</em><em>0</em><em>3</em><em>-</em><em>1</em><em>9</em><em>4</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>$</em><em>1</em><em>0</em><em>9</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em>
The question as presented is incomplete, here is the complete question with the multiple choice:
The sequence a1 = 6, an = 3an − 1 can also be
written as:
1) an = 6 ⋅ 3^n
2) an = 6 ⋅ 3^(n + 1)
3) an = 2 ⋅ 3^n
4) an = 2 ⋅ 3^(n + 1)
The correct choice is option 3) an = 2⋅3^n.
If we look at the initial sequence an = 3⋅an-1, and
a1 = 3⋅a0 = 6
a0 = 6/3
a0 = 2
We can now look at the sequence.
a0 = 2
a1 = 6
a2 = 18
a3 = 54
etc...
A common factor in each of those numbers is 2, so we can rewrite the sequence by factoring out 2.
a0 = 2⋅1
a1 = 2⋅3
a2 = 2⋅9
a3 = 2⋅27
The numbers being multiplied by 2 are all factors of 3. So we can rewrite the sequence again as:
a0 = 2⋅3^0
a1 = 2⋅3^1
a2 = 2⋅3^2
a3 = 2⋅3^3
This sequence can now be rewritten as an = 2⋅3^n.
What is the question now??