Answer:
<em>length</em><em> </em><em>l</em><em> </em><em>=</em><em>150</em><em> </em>
<em>breadth</em><em> </em><em>b</em><em> </em><em>=</em><em> </em><em>80</em><em> </em>
<em>lf</em><em> </em><em>2</em><em> </em><em>m</em><em> </em><em>wide</em><em> </em><em> </em><em>of</em><em> </em><em>road</em><em> </em><em>is</em><em> </em><em>inside</em><em> </em><em>the</em><em> </em><em>garden</em>
<em>then</em>
<em>lt's</em><em> </em><em>area</em><em> </em><em>=</em><em> </em><em>l</em><em> </em><em>×</em><em>b</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>150</em><em> </em><em>×</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>300m</em><em>^</em><em>2</em>
The volume of the copper wire is 226.080 cm³ and the mass of the wire is 2,012.112 g/cm³.
Given that, the length of copper wire=200 m=200000 mm and the diameter of the copper wire=1.2 mm.
We need to find the volume of the copper wire.
<h3>What is the formula to find the volume of the cylinder?</h3>
The formula to find the volume of a cylinder is πr²h.
Now, the volume of the copper wire=πr²h=
mm³=226.080 cm³
If the density of copper is 8.9 g/cm³, find the mass of the wire.
We know that
.
⇒8.9 g/cm³=
⇒Mass=2,012.112 g/cm³
Therefore, the volume of the copper wire is 226.080 cm³ and the mass of the wire is 2,012.112 g/cm³.
To learn more about the volume of the cylinder visit:
brainly.com/question/16134180.
#SPJ1
Answer:
5 feet
Step-by-step explanation:
15 divided by 3 equals 5
<h2>
Answer:</h2>
The solution of the inequality is:

<h2>
Step-by-step explanation:</h2>
We are given a inequality in terms of variable x as:

Now we are asked to find the solution of the inequality i.e. we are asked to find the possible values of x such that the inequality holds true.
We may simplify this inequality as follows:
On using the distributive property of multiplication in the left hand side of the inequality we have:

The solution is: 