Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
Low coefficient of friction
1. flying a plane (friction between air and plane)
2. ice skating (friction between ice and skate blade)
3. swimming (water & skin)
4. rowing a boat (water and boat)
- (spring constant) (new length of spring - original length of spring) = Force applied to spring.
that is
-kx=F
Did you only have how far the cart traveled? No mass or acceleration or speed or time taken?
You have been given the storm's velocity.
It is the description of all the microscopic objects in everything in the univverse