Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
Answer:
Explanation:
Given that
Distance from the center ,r= 0.1 m
The angular speed ,ω = 15.5 rad/s
We know that centripetal acceleration is given as
a=ω² r
a=Acceleration
r=Radius
ω=angular speed
a=ω² r
Now by putting the values in the above equation we get


Therefore the acceleration of the clay will be
.
Answer:
A spring whose spring constant is 200 lbf/in has an initial force of 100 lbf acting on it. Determine the work, in Btu, required to compress it another 1 inch.
Step 1 of 4
The force at any point during the deflection of the spring is given by,
where is the initial force
and x is the deflection as measured from the point where the initial force occurred.
The work required to compress the spring is
Therefore work required to compress the spring is
The work required to compress the spring in Btu is calculated by
Where 1Btu =778
The work required to compress the spring,
eman Asked on February 19, 2018 in thermal fluid Sciences 4th solutions.
Explanation:
Answer:
There is a dependency relationship between the refractive index of each substance and the radiation wavelength.
The refractive index in a given medium is inversely proportional to the wavelength of a color.
For example:
The rays of the red color have a wavelength greater than the rays of the blue color, therefore they have a lower refractive index and consequently a light scattering less than the blue.
Snell's law :
n₂/n₁ = v₁/v₂ = λ₁ /λ₂
*n: (refractive index)
v: (speed of light propagation)
λ: (wavelength)