Answer:
Explanation:
From frequency of oscillation
Initially with the suspended string, the above equation is correct for the relation, hence
where k is force constant and m is the mass
When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional
Employing f2/ f1, we have
The same braking force does work on these objects to slow them down. The work done is equal to their change in kinetic energy:
FΔx = 0.5mv²
F = force, Δx = distance traveled, m = mass, v = speed
Isolate Δx:
Δx = 0.5mv²/F
Calculate Δx for each object.
Object 1: m = 4.0kg, v = 2.0m/s
Δx = 0.5(4.0)(2.0)²/F = 8/F
Object 2: m = 1.0kg, v = 4.0m/s
Δx = 0.5(1.0)(4.0)²/F = 8/F
The two objects travel the same distance before stopping.
In this problem, we apply the equation regarding kinematics expressed as vf^2 = v0^2 + 2as vf eventually becomes zero because the ball stops in the end. a = -9.8 m/s2s = 2 metres this time
This gives initial velocity, vo equal to 6.26m/s
now 6.26-(-8.85) = 15.11m/s
change in velocity/change in time = average acceleration 15.11/(12/1000) = 1259.167 m/s^2
Answer:
The answer to your question is Alpha particles.
Explanation: An electron released by a radioactive nucleus that causes a neutron to change into a proton is called a beta particle.
Answer:
0.6 μC
Explanation:
C = capacitance of the capacitor = 100 x 10⁻¹² F
d = separation between the plates of capacitor = 1 mm = 1 x 10⁻³ m
E = Electric field = 6 x 10⁶ N/C
Q = Amount of charge
V = Potential difference
Potential difference is given as
V = E d
Amount of charge stored is given as
Q = CV
hence
Q = C E d
inserting the values
Q = (100 x 10⁻¹²) (6 x 10⁶) (1 x 10⁻³)
Q = 6 x 10⁻⁷ C
Q = 0.6 μC