The final temperature of the seawater-deck system is 990°C.
<h3>What is heat?</h3>
The increment in temperature adds up the thermal energy into the object. This energy is Heat energy.
The deck of a small ship reaches a temperature Ti= 48.17°C seawater on the deck to cool it down. During the cooling, heat Q =3,710,000 J are transferred to the seawater from the deck. Specific heat of seawater= 3,930 J/kg°C.
Suppose for 1 kg of sea water, the heat transferred from the system is given by
3,710,000 = 1 x 3,930 x (T - 48.17)
T = 990°C to the nearest tenth.
The final temperature of the seawater-deck system is 990°C.
Learn more about heat.
brainly.com/question/13860901
#SPJ1
Answer:
165.529454
Explanation:
According to the Pythagorean Theorem for calculating the lengths of a right angle triangle's sides, a^2 + b+2 = c^2, where c is the longest side (and the side opposing the right angle). So in your case it would be 150*150 + 70*70 = 27400. And √ 27400 is your answer.
Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Answer:
1.7 m/s²
Explanation:
d = length of the ramp = 13.5 m
v₀ = initial speed of the skateboarder = 0 m/s
v = final speed of the skateboarder = 7.37 m/s
a = acceleration
Using the equation
v² = v₀² + 2 a d
7.37² = 0² + 2 a (13.5)
a = 2.01 m/s²
θ = angle of the incline relative to ground = 29.9
a' = Component of acceleration parallel to the ground
Component of acceleration parallel to the ground is given as
a' = a Cosθ
a' = 2.01 Cos29.9
a' = 1.7 m/s²
Answer:
A. It is colder at the top of a mountain
Explanation: