11.86 years. Usually memorized as "12 years".
theanswer is b.heart disease
Answer:
E_{k2}=2660 [J] kinetic energy.
Explanation:
The energy in the initial state i.e. when the rollercoaster is at the top is equal to the energy in the final state i.e. when it is at the bottom of the hill.
These states can be represented by means of the second equation.
![E_{k1}+E_{p1}=E_{k2}\\160 + 2500 = E_{k2}\\E_{k2}=2660 [J]](https://tex.z-dn.net/?f=E_%7Bk1%7D%2BE_%7Bp1%7D%3DE_%7Bk2%7D%5C%5C160%20%2B%202500%20%3D%20E_%7Bk2%7D%5C%5CE_%7Bk2%7D%3D2660%20%5BJ%5D)
Since the rollercoaster is located in the bottom of the hill where the potential energy level is zero, therefore there is only kinetic energy in the second state.
Answer:
TEMPERATURE
Explanation:
When a wave is absorbed by a material medium, different phenomena occur, but the collisions with the other particles causes the energy to be transformed into internal energy in the atoms and molecules of the material, with TEMPERATURE measurements the increase in the internal energy of the material.
The pressure of the gas is 686 mmhg.
If h = 89 mm
and atmospheric pressure = 775 mmhg
Pressure of the gas = ?
We can find the pressure of the gas by finding the difference between both values.
pressure of the gas = 775 mmhg - 89 mm = 686 mmhg