Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
*Move terms to the left and set equal to zero:
4㏒(√x) - ㏒(3x) - ㏒(x²) = 0
*simplify each term:
㏒(x²) - ㏒(3x) - ㏒(x²)
㏒(x²÷x²) -㏒(3x)
㏒(x²÷x² / 3x)
*cancel common factor x²:
㏒()
*rewrite to solve for x :
10⁰ =
1 =
1 · x = · x
1x =
*that would be our answer, however, the convention is to exclude the "1" in front of variables so we are left with:
x =
Answer:
6xy² + 10y²z is the product answer
Step-by-step explanation:
The mean is the sum of the given data divided by the number of the data
So we will add the data first
The sum of the times = 10 + 5 + 6 + 8 + 13 + 9 + 11 = 62
The number of students = 7
The mean is
Round it to the nearest tenth, then
The mean = 8.9
The mean travel time is 8.9
W=mg
<span>Where: </span>
<span>Weight = mass * acceleration due to gravity </span>
<span>So let's say I want to work out my weight on the moon. I know I weigh about 70kg (which would be N), but I can't use that figure for the calculation on the moon. That is what I weigh on Earth, so let's look at the equation... </span>
<span>70kg = mass * 9.81m/s^2 </span>
<span>Where 9.81m/s^2 is the acceleration due to gravity on the surface on the earth. I want to get rid of that, so let's work out my mass by division; </span>
<span>70/9.81 = 7.14kg </span>
<span>I googled the acceleration of gravity on the Moon, which was = 1.6m/s^2 </span>
<span>Let's use that in the same equation W=mg </span>
<span>W = 7.14kg * 1.6m/s^2 = 11.42N
</span><span>On the Moon, you would weigh approximately one sixth of your weight on Earth, so if your bathroom scales tell you you weigh 120 pounds, there you would weigh 20 pounds.
</span>
<span>Moon`s gravitational pull is about one-sixth to the gravitational pull on earth hence weight on moon is about one-sixth of the weight on earth.</span>