Answer:
Solid, liquid or gas. So there is movement no matter the state. The key variable is density. The higher the density the less movement. In solids the motion can be so small it's very hard to measure. Gas on the other hand is easy the motion being large. Bear in mind temperature plays a big role. Higher temps bring faster motion. Finally the pressure of the gas brings about less motion the higher it is as the molecules are closer together & can't move as much.
Explanation:
Answer:
They have the same number of electron energy levels.
They transition from a metal to noble gas.
Explanation:
Periods in the periodic table of elements refer to elements in the same row. All the elements in a certain row of the periodic table;
have the same number of electron energy levels.
transition from a metal to noble gas.
Answer:
The mass of 10 cm³of a 0.4 g/dm³ solution of sodium carbonate is 0.004 grams
Explanation:
The question is with regards to density calculations
The density of the given sodium carbonate solution, ρ = 0.4 g/dm³
The volume of the given solution of sodium carbonate, V = 10 cm³ = 0.01 dm³


Therefore, we have;

The mass, "m", of the sodium carbonate in = ρ×V = 0.4 g/dm³ × 0.01 dm³ = 0.004 g
The mass of 10 cm³ (10 cm³ = 0.01 dm³) of a 0.4 g/dm³ solution of sodium carbonate, m = 0.004 g.
Answer:
Increase the pressure of the gas
Explanation:
According to the Pressure law, for a fixed mass of gas, at a constant volume (V), the pressure (P) is directly proportional to the absolute temperature (T).
From the kinetic molecular theory, gases are composed of particles which are in constant motion, colliding with themselves as well as with the walls of their container.
When the temperature of these gas molecules is increased, the molecules acquire more kinetic energy and the rate of collisions increases. Since the container cannot expand, the increase in pressure is due to the increase in collisions between the molecules of the gas as well as with the walls of their container.
Mercury Venus mars Jupiter Saturn