Answer:
D. 0.3 M
Explanation:
NH4SH (s) <--> NH3 (g) + H2S (g)
Initial concentration 0.085mol/0.25L 0 0
Change in concentration -0.2M +0.2 M +0.2M
Equilibrium 0.035mol/0.25 L=0.14M 0.2M 0.2M
concentration
Change in concentration (NH4SH) = (0.085-0.035)mol/0.25L =0.2M
K = [NH3]*[H2S]/[NH4SH] = 0.2M*0.2M/0.14M ≈ 0.29 M ≈ 0.3M
Entropy change is defined only along the path of an internally reversible process path.
<h3><u>What is Entropy Change </u>?</h3>
- Entropy is a measure of a thermodynamic system's overall level of disorder or non-uniformity. The thermal energy that a system was unable to use to perform work is known as entropy.
- Entropy Change is a phenomena that measures how disorder or randomness have changed inside a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work. More unpredictability in a thermodynamic system indicates high entropy.
- Entropy is a state function, hence it is independent of the direction that the thermodynamic process takes.
- The rearranging of atoms and molecules from their initial state causes the change in entropy.
- This may result in a decrease or rise in the system's disorder or unpredictability, which will, in turn, result in a corresponding drop or increase in entropy.
To view more questions about entropy change, refer to:
brainly.com/question/4526346
#SPJ4
Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample
Answer: 4.96 moles
Explanation:
C5H12 is the chemical formula for pentane, the fifth member of the alkane family.
Given that,
number of moles of C5H12 = ?
Mass in grams = 357.4 g
Molar mass of C5H12 = ?
To get the molar mass of C5H12, use the atomic mass of carbon = 12g; and Hydrogen = 1g
i.e C5H12 = (12 x 5) + (1 x 12)
= 60g + 12g
= 72g/mol
Now, apply the formula
Number of moles = Mass / molar mass
Number of moles = 357.4g / 72g/mol
= 4.96 moles
Thus, 4.96 moles of C5H12 that are contained in 357.4 g of the compound.
Answer:
B
Explanation:
The most stable carbonation with OH on the adjacent carbon