Answer:
2.453.
Explanation:
<em>∵ pH = - log[H₃O⁺]
</em>
[H₃O⁺] = 0.00352 M.
<em>∴ pH = - log[H₃O⁺] </em>= - log(0.00352) = <em>2.453.</em>
<span><span>1) Calculate the total number of nucleons (protons and neutrons) in the nuclide
<span>--> If the number of nucleons is even, there is a good chance it is stable.
</span></span><span><span>
2) Are there a magic number of protons or neutrons?
</span>--> 2,8,20,28,50,82,114 (protons), 126 (neutrons), 184 (neutrons) are particularly stable in nuclei.
</span><span>
3) Calculate the N/Z ratio.
<span>--> Use the belt of stability (Figure 1) to determine the best way to get from an unstable nucleus to a stable nucleus</span></span></span>
Answer:
1.602 L (or) 1602 mL
Explanation:
Molarity is the amount of solute dissolved per unit volume of solution. It is expressed as,
Molarity = Moles / Volume of Solution ----- (1)
Rearranging above equation for volume,
Volume of solution = Moles / Molarity -------(2)
Data Given;
Molarity = 0.00813 mol.L⁻¹
Mass = 1.55 g
First calculate Moles for given mass as,
Moles = Mass / M.mass
Moles = 1.55 g / 119.002 g.mol⁻¹
Moles = 0.0130 mol
Now, putting value of Moles and Molarity in eq. 2,
Volume of solution = 0.0130 mol / 0.00813 mol.L⁻¹
Volume of solution = 1.60 L
or,
Volume of solution = 1602 mL
Answer:
Here, acceleration due to gravity(a) is assumed as 10m/s².We can also take it as 9.8m/s²
Explanation: