Answer:
The reaction will be non spontaneous at these concentrations.
Explanation:

Expression for an equilibrium constant
:
![K_c=\frac{[Ag^+][Br^-]}{[AgCl]}=\frac{[Ag^+][Br^-]}{1}=[Ag^+][Br^-]](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BAgCl%5D%7D%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B1%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D)
Solubility product of the reaction:
![K_{sp}=[Ag^+][Br^-]=K_c=7.7\times 10^{-13}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3DK_c%3D7.7%5Ctimes%2010%5E%7B-13%7D%20)
Reaction between Gibb's free energy and equilibrium constant if given as:


![\Delta G^o=-2.303\times 8.314 J/K mol\times 298 K\times \log[7.7\times 10^{-13}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-2.303%5Ctimes%208.314%20J%2FK%20mol%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B7.7%5Ctimes%2010%5E%7B-13%7D%5D)

Gibb's free energy when concentration
and ![[Br^-] = 1.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BBr%5E-%5D%20%3D%201.0%5Ctimes%2010%5E%7B-3%7D%20M)
Reaction quotient of an equilibrium = Q
![Q=[Ag^+][Br^-]=1.0\times 10^{-2} M\times 1.0\times 10^{-3} M=1.0\times 10^{-5}](https://tex.z-dn.net/?f=Q%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3D1.0%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%201.0%5Ctimes%2010%5E%7B-3%7D%20M%3D1.0%5Ctimes%2010%5E%7B-5%7D)

![\Delta G=69.117 kJ/mol+(2.303\times 8.314 Joule/mol K\times 298 K\times \log[1.0\times 10^{-5}])](https://tex.z-dn.net/?f=%5CDelta%20G%3D69.117%20kJ%2Fmol%2B%282.303%5Ctimes%208.314%20Joule%2Fmol%20K%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B1.0%5Ctimes%2010%5E%7B-5%7D%5D%29)

- For reaction to spontaneous reaction:
. - For reaction to non spontaneous reaction:
.
Since ,the value of Gibbs free energy is greater than zero which means reaction will be non spontaneous at these concentrations
Answer:
Vinyl chloride is an organochloride with the formula H2C=CHCl that is also called vinyl chloride monomer (VCM) or chloroethene. This colorless compound is an important industrial chemical chiefly used to produce the polymer polyvinyl chloride (PVC).
Explanation:
Because in CH4 the valence electrons of Carbon are being pulled away from the nucleus with the same force (since all hydrogen has the same electronegativity).So charges are equally distributed throughout the atom and the atom is non-polar. In CH3Cl Cl has a different electronegativity than H, so charges aren't equally distributed and therefore the molecule is polar.
Answer: The correct answer is "wind direction".
Explanation:
Coriolis effect: This is an apparent deflection of moving air or water caused by the rotation of the earth.
Currents are created by wind. Their directions are determined by Coriolis effect.
Currents are created by wind. The earth is in constant motion. It describes the rotation of the earth which steers winds and the surface current. The ocean surface currents are deflected by Coriolis effect.
The direction of the wind blows from north and south towards equator.
Therefore, the Coriolis effect influences wind direction.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.